Charge instability of topological Fermi arcs in chiral crystal CoSi

Topological boundary states emerged at the spatial boundary between topological non-trivial and trivial phases, are usually gapless, or commonly referred as metallic states. For example, the surface state of a topological insulator is a gapless Dirac state. These metallic topological boundary states...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science bulletin 2023-01, Vol.68 (2), p.165-172
Hauptverfasser: Rao, Zhicheng, Hu, Quanxin, Tian, Shangjie, Qu, Qing, Chen, Congrun, Gao, Shunye, Yuan, Zhenyu, Tang, Cenyao, Fan, Wenhui, Huang, Jierui, Huang, Yaobo, Wang, Li, Zhang, Lu, Li, Fangsen, Wang, Kedong, Yang, Huaixin, Weng, Hongming, Qian, Tian, Xu, Jinpeng, Jiang, Kun, Lei, Hechang, Sun, Yu-Jie, Ding, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 172
container_issue 2
container_start_page 165
container_title Science bulletin
container_volume 68
creator Rao, Zhicheng
Hu, Quanxin
Tian, Shangjie
Qu, Qing
Chen, Congrun
Gao, Shunye
Yuan, Zhenyu
Tang, Cenyao
Fan, Wenhui
Huang, Jierui
Huang, Yaobo
Wang, Li
Zhang, Lu
Li, Fangsen
Wang, Kedong
Yang, Huaixin
Weng, Hongming
Qian, Tian
Xu, Jinpeng
Jiang, Kun
Lei, Hechang
Sun, Yu-Jie
Ding, Hong
description Topological boundary states emerged at the spatial boundary between topological non-trivial and trivial phases, are usually gapless, or commonly referred as metallic states. For example, the surface state of a topological insulator is a gapless Dirac state. These metallic topological boundary states are typically well described by non-interacting fermions. However, the behavior of topological boundary states with significant electron–electron interactions, which could turn the gapless boundary states into gapped ordered states, e.g., density wave states or superconducting states, is of great interest theoretically, but is still lacking evidence experimentally. Here, we report the observation of incommensurable charge density wave (CDW) formed on the topological boundary states driven by the electron–electron interactions on the (001) surface of CoSi. The wavevector of CDW varies as the temperature changes, which coincides with the evolution of topological surface Fermi arcs with temperature. The orientation of the CDW phase is determined by the chirality of the Fermi arcs, which indicates a direct association between CDW and Fermi arcs. Our finding will stimulate the search of more interactions-driven ordered states, such as superconductivity and magnetism, on the boundaries of topological materials.
doi_str_mv 10.1016/j.scib.2023.01.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2767168791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2095927323000063</els_id><sourcerecordid>2767168791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-3b744502650e043f67e2289d088de0462d47cdbb5c63bd7ac382efcecf1db4b93</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMoKuoLeJAevWydJG3SghcprgoLHtRzaJKpZmk3a9IV9u1N2XWPnmYYvv-H-Qi5ppBToOJumUfjdM6A8RxoDkCPyDmDupzVrKLHh13yM3IV4xISUdSsAHlKzrgQJWdUnpOm-WrDJ2ZuFcdWu96N28x32ejXvvefzrR9NscwuKwNJiYqM18upKMJ2xTos8a_uUty0rV9xKv9vCAf88f35nm2eH16aR4WM1MAjDOuZVGUwEQJCAXvhETGqtpCVdl0EMwW0litSyO4trI1vGLYGTQdtbrQNb8gt7vedfDfG4yjGlw02PftCv0mKiaFpKKSNU0o26Em-BgDdmod3NCGraKgJn9qqSZ_avKngKpkJ4Vu9v0bPaA9RP5sJeB-B2D68sdhmDpwZdC6gGZU1rv_-n8BgAqATw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767168791</pqid></control><display><type>article</type><title>Charge instability of topological Fermi arcs in chiral crystal CoSi</title><source>Alma/SFX Local Collection</source><creator>Rao, Zhicheng ; Hu, Quanxin ; Tian, Shangjie ; Qu, Qing ; Chen, Congrun ; Gao, Shunye ; Yuan, Zhenyu ; Tang, Cenyao ; Fan, Wenhui ; Huang, Jierui ; Huang, Yaobo ; Wang, Li ; Zhang, Lu ; Li, Fangsen ; Wang, Kedong ; Yang, Huaixin ; Weng, Hongming ; Qian, Tian ; Xu, Jinpeng ; Jiang, Kun ; Lei, Hechang ; Sun, Yu-Jie ; Ding, Hong</creator><creatorcontrib>Rao, Zhicheng ; Hu, Quanxin ; Tian, Shangjie ; Qu, Qing ; Chen, Congrun ; Gao, Shunye ; Yuan, Zhenyu ; Tang, Cenyao ; Fan, Wenhui ; Huang, Jierui ; Huang, Yaobo ; Wang, Li ; Zhang, Lu ; Li, Fangsen ; Wang, Kedong ; Yang, Huaixin ; Weng, Hongming ; Qian, Tian ; Xu, Jinpeng ; Jiang, Kun ; Lei, Hechang ; Sun, Yu-Jie ; Ding, Hong</creatorcontrib><description>Topological boundary states emerged at the spatial boundary between topological non-trivial and trivial phases, are usually gapless, or commonly referred as metallic states. For example, the surface state of a topological insulator is a gapless Dirac state. These metallic topological boundary states are typically well described by non-interacting fermions. However, the behavior of topological boundary states with significant electron–electron interactions, which could turn the gapless boundary states into gapped ordered states, e.g., density wave states or superconducting states, is of great interest theoretically, but is still lacking evidence experimentally. Here, we report the observation of incommensurable charge density wave (CDW) formed on the topological boundary states driven by the electron–electron interactions on the (001) surface of CoSi. The wavevector of CDW varies as the temperature changes, which coincides with the evolution of topological surface Fermi arcs with temperature. The orientation of the CDW phase is determined by the chirality of the Fermi arcs, which indicates a direct association between CDW and Fermi arcs. Our finding will stimulate the search of more interactions-driven ordered states, such as superconductivity and magnetism, on the boundaries of topological materials.</description><identifier>ISSN: 2095-9273</identifier><identifier>EISSN: 2095-9281</identifier><identifier>DOI: 10.1016/j.scib.2023.01.001</identifier><identifier>PMID: 36653217</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Charge density wave ; Chiral crystal ; Fermi arcs ; Many-body effect ; Topological boundary states</subject><ispartof>Science bulletin, 2023-01, Vol.68 (2), p.165-172</ispartof><rights>2023 Science China Press</rights><rights>Copyright © 2023 Science China Press. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-3b744502650e043f67e2289d088de0462d47cdbb5c63bd7ac382efcecf1db4b93</citedby><cites>FETCH-LOGICAL-c400t-3b744502650e043f67e2289d088de0462d47cdbb5c63bd7ac382efcecf1db4b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36653217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rao, Zhicheng</creatorcontrib><creatorcontrib>Hu, Quanxin</creatorcontrib><creatorcontrib>Tian, Shangjie</creatorcontrib><creatorcontrib>Qu, Qing</creatorcontrib><creatorcontrib>Chen, Congrun</creatorcontrib><creatorcontrib>Gao, Shunye</creatorcontrib><creatorcontrib>Yuan, Zhenyu</creatorcontrib><creatorcontrib>Tang, Cenyao</creatorcontrib><creatorcontrib>Fan, Wenhui</creatorcontrib><creatorcontrib>Huang, Jierui</creatorcontrib><creatorcontrib>Huang, Yaobo</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Li, Fangsen</creatorcontrib><creatorcontrib>Wang, Kedong</creatorcontrib><creatorcontrib>Yang, Huaixin</creatorcontrib><creatorcontrib>Weng, Hongming</creatorcontrib><creatorcontrib>Qian, Tian</creatorcontrib><creatorcontrib>Xu, Jinpeng</creatorcontrib><creatorcontrib>Jiang, Kun</creatorcontrib><creatorcontrib>Lei, Hechang</creatorcontrib><creatorcontrib>Sun, Yu-Jie</creatorcontrib><creatorcontrib>Ding, Hong</creatorcontrib><title>Charge instability of topological Fermi arcs in chiral crystal CoSi</title><title>Science bulletin</title><addtitle>Sci Bull (Beijing)</addtitle><description>Topological boundary states emerged at the spatial boundary between topological non-trivial and trivial phases, are usually gapless, or commonly referred as metallic states. For example, the surface state of a topological insulator is a gapless Dirac state. These metallic topological boundary states are typically well described by non-interacting fermions. However, the behavior of topological boundary states with significant electron–electron interactions, which could turn the gapless boundary states into gapped ordered states, e.g., density wave states or superconducting states, is of great interest theoretically, but is still lacking evidence experimentally. Here, we report the observation of incommensurable charge density wave (CDW) formed on the topological boundary states driven by the electron–electron interactions on the (001) surface of CoSi. The wavevector of CDW varies as the temperature changes, which coincides with the evolution of topological surface Fermi arcs with temperature. The orientation of the CDW phase is determined by the chirality of the Fermi arcs, which indicates a direct association between CDW and Fermi arcs. Our finding will stimulate the search of more interactions-driven ordered states, such as superconductivity and magnetism, on the boundaries of topological materials.</description><subject>Charge density wave</subject><subject>Chiral crystal</subject><subject>Fermi arcs</subject><subject>Many-body effect</subject><subject>Topological boundary states</subject><issn>2095-9273</issn><issn>2095-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMoKuoLeJAevWydJG3SghcprgoLHtRzaJKpZmk3a9IV9u1N2XWPnmYYvv-H-Qi5ppBToOJumUfjdM6A8RxoDkCPyDmDupzVrKLHh13yM3IV4xISUdSsAHlKzrgQJWdUnpOm-WrDJ2ZuFcdWu96N28x32ejXvvefzrR9NscwuKwNJiYqM18upKMJ2xTos8a_uUty0rV9xKv9vCAf88f35nm2eH16aR4WM1MAjDOuZVGUwEQJCAXvhETGqtpCVdl0EMwW0litSyO4trI1vGLYGTQdtbrQNb8gt7vedfDfG4yjGlw02PftCv0mKiaFpKKSNU0o26Em-BgDdmod3NCGraKgJn9qqSZ_avKngKpkJ4Vu9v0bPaA9RP5sJeB-B2D68sdhmDpwZdC6gGZU1rv_-n8BgAqATw</recordid><startdate>20230130</startdate><enddate>20230130</enddate><creator>Rao, Zhicheng</creator><creator>Hu, Quanxin</creator><creator>Tian, Shangjie</creator><creator>Qu, Qing</creator><creator>Chen, Congrun</creator><creator>Gao, Shunye</creator><creator>Yuan, Zhenyu</creator><creator>Tang, Cenyao</creator><creator>Fan, Wenhui</creator><creator>Huang, Jierui</creator><creator>Huang, Yaobo</creator><creator>Wang, Li</creator><creator>Zhang, Lu</creator><creator>Li, Fangsen</creator><creator>Wang, Kedong</creator><creator>Yang, Huaixin</creator><creator>Weng, Hongming</creator><creator>Qian, Tian</creator><creator>Xu, Jinpeng</creator><creator>Jiang, Kun</creator><creator>Lei, Hechang</creator><creator>Sun, Yu-Jie</creator><creator>Ding, Hong</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230130</creationdate><title>Charge instability of topological Fermi arcs in chiral crystal CoSi</title><author>Rao, Zhicheng ; Hu, Quanxin ; Tian, Shangjie ; Qu, Qing ; Chen, Congrun ; Gao, Shunye ; Yuan, Zhenyu ; Tang, Cenyao ; Fan, Wenhui ; Huang, Jierui ; Huang, Yaobo ; Wang, Li ; Zhang, Lu ; Li, Fangsen ; Wang, Kedong ; Yang, Huaixin ; Weng, Hongming ; Qian, Tian ; Xu, Jinpeng ; Jiang, Kun ; Lei, Hechang ; Sun, Yu-Jie ; Ding, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-3b744502650e043f67e2289d088de0462d47cdbb5c63bd7ac382efcecf1db4b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Charge density wave</topic><topic>Chiral crystal</topic><topic>Fermi arcs</topic><topic>Many-body effect</topic><topic>Topological boundary states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rao, Zhicheng</creatorcontrib><creatorcontrib>Hu, Quanxin</creatorcontrib><creatorcontrib>Tian, Shangjie</creatorcontrib><creatorcontrib>Qu, Qing</creatorcontrib><creatorcontrib>Chen, Congrun</creatorcontrib><creatorcontrib>Gao, Shunye</creatorcontrib><creatorcontrib>Yuan, Zhenyu</creatorcontrib><creatorcontrib>Tang, Cenyao</creatorcontrib><creatorcontrib>Fan, Wenhui</creatorcontrib><creatorcontrib>Huang, Jierui</creatorcontrib><creatorcontrib>Huang, Yaobo</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Li, Fangsen</creatorcontrib><creatorcontrib>Wang, Kedong</creatorcontrib><creatorcontrib>Yang, Huaixin</creatorcontrib><creatorcontrib>Weng, Hongming</creatorcontrib><creatorcontrib>Qian, Tian</creatorcontrib><creatorcontrib>Xu, Jinpeng</creatorcontrib><creatorcontrib>Jiang, Kun</creatorcontrib><creatorcontrib>Lei, Hechang</creatorcontrib><creatorcontrib>Sun, Yu-Jie</creatorcontrib><creatorcontrib>Ding, Hong</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Science bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rao, Zhicheng</au><au>Hu, Quanxin</au><au>Tian, Shangjie</au><au>Qu, Qing</au><au>Chen, Congrun</au><au>Gao, Shunye</au><au>Yuan, Zhenyu</au><au>Tang, Cenyao</au><au>Fan, Wenhui</au><au>Huang, Jierui</au><au>Huang, Yaobo</au><au>Wang, Li</au><au>Zhang, Lu</au><au>Li, Fangsen</au><au>Wang, Kedong</au><au>Yang, Huaixin</au><au>Weng, Hongming</au><au>Qian, Tian</au><au>Xu, Jinpeng</au><au>Jiang, Kun</au><au>Lei, Hechang</au><au>Sun, Yu-Jie</au><au>Ding, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge instability of topological Fermi arcs in chiral crystal CoSi</atitle><jtitle>Science bulletin</jtitle><addtitle>Sci Bull (Beijing)</addtitle><date>2023-01-30</date><risdate>2023</risdate><volume>68</volume><issue>2</issue><spage>165</spage><epage>172</epage><pages>165-172</pages><issn>2095-9273</issn><eissn>2095-9281</eissn><abstract>Topological boundary states emerged at the spatial boundary between topological non-trivial and trivial phases, are usually gapless, or commonly referred as metallic states. For example, the surface state of a topological insulator is a gapless Dirac state. These metallic topological boundary states are typically well described by non-interacting fermions. However, the behavior of topological boundary states with significant electron–electron interactions, which could turn the gapless boundary states into gapped ordered states, e.g., density wave states or superconducting states, is of great interest theoretically, but is still lacking evidence experimentally. Here, we report the observation of incommensurable charge density wave (CDW) formed on the topological boundary states driven by the electron–electron interactions on the (001) surface of CoSi. The wavevector of CDW varies as the temperature changes, which coincides with the evolution of topological surface Fermi arcs with temperature. The orientation of the CDW phase is determined by the chirality of the Fermi arcs, which indicates a direct association between CDW and Fermi arcs. Our finding will stimulate the search of more interactions-driven ordered states, such as superconductivity and magnetism, on the boundaries of topological materials.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>36653217</pmid><doi>10.1016/j.scib.2023.01.001</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2095-9273
ispartof Science bulletin, 2023-01, Vol.68 (2), p.165-172
issn 2095-9273
2095-9281
language eng
recordid cdi_proquest_miscellaneous_2767168791
source Alma/SFX Local Collection
subjects Charge density wave
Chiral crystal
Fermi arcs
Many-body effect
Topological boundary states
title Charge instability of topological Fermi arcs in chiral crystal CoSi
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge%20instability%20of%20topological%20Fermi%20arcs%20in%20chiral%20crystal%20CoSi&rft.jtitle=Science%20bulletin&rft.au=Rao,%20Zhicheng&rft.date=2023-01-30&rft.volume=68&rft.issue=2&rft.spage=165&rft.epage=172&rft.pages=165-172&rft.issn=2095-9273&rft.eissn=2095-9281&rft_id=info:doi/10.1016/j.scib.2023.01.001&rft_dat=%3Cproquest_cross%3E2767168791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767168791&rft_id=info:pmid/36653217&rft_els_id=S2095927323000063&rfr_iscdi=true