Multiple assessments of non‐inferiority trials with ordinal endpoints
Non‐inferiority (NI) trials are implemented when there is a practical demand to search for alternatives to standard therapies, such as to reduce side effects. An experimental treatment is considered non‐inferior to the standard treatment when it exhibits clinically non‐significant loss of efficacy....
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2023-04, Vol.42 (8), p.1113-1126 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1126 |
---|---|
container_issue | 8 |
container_start_page | 1113 |
container_title | Statistics in medicine |
container_volume | 42 |
creator | Xu, Wenfu Hou, Yuli Lu, Tong‐Yu |
description | Non‐inferiority (NI) trials are implemented when there is a practical demand to search for alternatives to standard therapies, such as to reduce side effects. An experimental treatment is considered non‐inferior to the standard treatment when it exhibits clinically non‐significant loss of efficacy. Ordinal categorical responses are frequently observed in clinical trials. It has been reported that responses measured using an ordinal scale produce more informative analysis than when responses collapse into binary outcomes. We study the NI trials using ordinal endpoints. We propose a latent variable model for ordinal categorical responses. Based on the proposed latent variable model, the mean efficacy of the different treatments is denoted by the corresponding mean parameter of the underlying continuous distributions. A two‐step procedure is proposed for model identification and parameter estimation. A non‐inferiority analysis can then be conducted based on the latent variable model and the corresponding estimation procedure. We also develop a method and an algorithm to produce an optimal sample size configuration based on the proposed testing procedure. Two clinical examples are provided for demonstrative purposes. |
doi_str_mv | 10.1002/sim.9660 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2766719240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766719240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3100-ca7aef22903d81815328d4c3ad30a38e1eaad861b26e341a01fb82c0c67361cd3</originalsourceid><addsrcrecordid>eNp1kNFKwzAUhoMobk7BJ5CCN950niRt0l7K0DnY8EK9LlmSYkbb1KRl7M5H8Bl9EjM3FQSvzsX5zsd_foTOMYwxALn2ph7njMEBGmLIeQwkzQ7REAjnMeM4HaAT71cAGKeEH6MBZSwFDniIpou-6kxb6Uh4r72vddP5yJZRY5uPt3fTlNoZ60y3iTpnROWjteleIuuUaUQV6Ua11oSTU3RUhq0-288Rer67fZrcx_OH6WxyM48lDUljKbjQJSE5UJXhDKeUZCqRVCgKgmYaayFUxvCSME0TLACXy4xIkIxThqWiI3S187bOvvbad0VtvNRVJRpte18QzsLDOUkgoJd_0JXtXUi9pTIGNE9p8iuUznrvdFm0ztTCbQoMxbbcIpRbbMsN6MVe2C9rrX7A7zYDEO-Atan05l9R8ThbfAk_Afpng6M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786039534</pqid></control><display><type>article</type><title>Multiple assessments of non‐inferiority trials with ordinal endpoints</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xu, Wenfu ; Hou, Yuli ; Lu, Tong‐Yu</creator><creatorcontrib>Xu, Wenfu ; Hou, Yuli ; Lu, Tong‐Yu</creatorcontrib><description>Non‐inferiority (NI) trials are implemented when there is a practical demand to search for alternatives to standard therapies, such as to reduce side effects. An experimental treatment is considered non‐inferior to the standard treatment when it exhibits clinically non‐significant loss of efficacy. Ordinal categorical responses are frequently observed in clinical trials. It has been reported that responses measured using an ordinal scale produce more informative analysis than when responses collapse into binary outcomes. We study the NI trials using ordinal endpoints. We propose a latent variable model for ordinal categorical responses. Based on the proposed latent variable model, the mean efficacy of the different treatments is denoted by the corresponding mean parameter of the underlying continuous distributions. A two‐step procedure is proposed for model identification and parameter estimation. A non‐inferiority analysis can then be conducted based on the latent variable model and the corresponding estimation procedure. We also develop a method and an algorithm to produce an optimal sample size configuration based on the proposed testing procedure. Two clinical examples are provided for demonstrative purposes.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.9660</identifier><identifier>PMID: 36650701</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Drug-Related Side Effects and Adverse Reactions ; Humans ; latent variable model ; Models, Statistical ; non‐inferiority trials ; ordinal response ; Parameter estimation ; Sample Size ; Statistical Distributions</subject><ispartof>Statistics in medicine, 2023-04, Vol.42 (8), p.1113-1126</ispartof><rights>2023 John Wiley & Sons Ltd.</rights><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3100-ca7aef22903d81815328d4c3ad30a38e1eaad861b26e341a01fb82c0c67361cd3</cites><orcidid>0000-0002-5801-294X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.9660$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.9660$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36650701$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Wenfu</creatorcontrib><creatorcontrib>Hou, Yuli</creatorcontrib><creatorcontrib>Lu, Tong‐Yu</creatorcontrib><title>Multiple assessments of non‐inferiority trials with ordinal endpoints</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Non‐inferiority (NI) trials are implemented when there is a practical demand to search for alternatives to standard therapies, such as to reduce side effects. An experimental treatment is considered non‐inferior to the standard treatment when it exhibits clinically non‐significant loss of efficacy. Ordinal categorical responses are frequently observed in clinical trials. It has been reported that responses measured using an ordinal scale produce more informative analysis than when responses collapse into binary outcomes. We study the NI trials using ordinal endpoints. We propose a latent variable model for ordinal categorical responses. Based on the proposed latent variable model, the mean efficacy of the different treatments is denoted by the corresponding mean parameter of the underlying continuous distributions. A two‐step procedure is proposed for model identification and parameter estimation. A non‐inferiority analysis can then be conducted based on the latent variable model and the corresponding estimation procedure. We also develop a method and an algorithm to produce an optimal sample size configuration based on the proposed testing procedure. Two clinical examples are provided for demonstrative purposes.</description><subject>Drug-Related Side Effects and Adverse Reactions</subject><subject>Humans</subject><subject>latent variable model</subject><subject>Models, Statistical</subject><subject>non‐inferiority trials</subject><subject>ordinal response</subject><subject>Parameter estimation</subject><subject>Sample Size</subject><subject>Statistical Distributions</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kNFKwzAUhoMobk7BJ5CCN950niRt0l7K0DnY8EK9LlmSYkbb1KRl7M5H8Bl9EjM3FQSvzsX5zsd_foTOMYwxALn2ph7njMEBGmLIeQwkzQ7REAjnMeM4HaAT71cAGKeEH6MBZSwFDniIpou-6kxb6Uh4r72vddP5yJZRY5uPt3fTlNoZ60y3iTpnROWjteleIuuUaUQV6Ua11oSTU3RUhq0-288Rer67fZrcx_OH6WxyM48lDUljKbjQJSE5UJXhDKeUZCqRVCgKgmYaayFUxvCSME0TLACXy4xIkIxThqWiI3S187bOvvbad0VtvNRVJRpte18QzsLDOUkgoJd_0JXtXUi9pTIGNE9p8iuUznrvdFm0ztTCbQoMxbbcIpRbbMsN6MVe2C9rrX7A7zYDEO-Atan05l9R8ThbfAk_Afpng6M</recordid><startdate>20230415</startdate><enddate>20230415</enddate><creator>Xu, Wenfu</creator><creator>Hou, Yuli</creator><creator>Lu, Tong‐Yu</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5801-294X</orcidid></search><sort><creationdate>20230415</creationdate><title>Multiple assessments of non‐inferiority trials with ordinal endpoints</title><author>Xu, Wenfu ; Hou, Yuli ; Lu, Tong‐Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3100-ca7aef22903d81815328d4c3ad30a38e1eaad861b26e341a01fb82c0c67361cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Drug-Related Side Effects and Adverse Reactions</topic><topic>Humans</topic><topic>latent variable model</topic><topic>Models, Statistical</topic><topic>non‐inferiority trials</topic><topic>ordinal response</topic><topic>Parameter estimation</topic><topic>Sample Size</topic><topic>Statistical Distributions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Wenfu</creatorcontrib><creatorcontrib>Hou, Yuli</creatorcontrib><creatorcontrib>Lu, Tong‐Yu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Wenfu</au><au>Hou, Yuli</au><au>Lu, Tong‐Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple assessments of non‐inferiority trials with ordinal endpoints</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2023-04-15</date><risdate>2023</risdate><volume>42</volume><issue>8</issue><spage>1113</spage><epage>1126</epage><pages>1113-1126</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Non‐inferiority (NI) trials are implemented when there is a practical demand to search for alternatives to standard therapies, such as to reduce side effects. An experimental treatment is considered non‐inferior to the standard treatment when it exhibits clinically non‐significant loss of efficacy. Ordinal categorical responses are frequently observed in clinical trials. It has been reported that responses measured using an ordinal scale produce more informative analysis than when responses collapse into binary outcomes. We study the NI trials using ordinal endpoints. We propose a latent variable model for ordinal categorical responses. Based on the proposed latent variable model, the mean efficacy of the different treatments is denoted by the corresponding mean parameter of the underlying continuous distributions. A two‐step procedure is proposed for model identification and parameter estimation. A non‐inferiority analysis can then be conducted based on the latent variable model and the corresponding estimation procedure. We also develop a method and an algorithm to produce an optimal sample size configuration based on the proposed testing procedure. Two clinical examples are provided for demonstrative purposes.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>36650701</pmid><doi>10.1002/sim.9660</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5801-294X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2023-04, Vol.42 (8), p.1113-1126 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_2766719240 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Drug-Related Side Effects and Adverse Reactions Humans latent variable model Models, Statistical non‐inferiority trials ordinal response Parameter estimation Sample Size Statistical Distributions |
title | Multiple assessments of non‐inferiority trials with ordinal endpoints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20assessments%20of%20non%E2%80%90inferiority%20trials%20with%20ordinal%20endpoints&rft.jtitle=Statistics%20in%20medicine&rft.au=Xu,%20Wenfu&rft.date=2023-04-15&rft.volume=42&rft.issue=8&rft.spage=1113&rft.epage=1126&rft.pages=1113-1126&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.9660&rft_dat=%3Cproquest_cross%3E2766719240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786039534&rft_id=info:pmid/36650701&rfr_iscdi=true |