Facile and Scalable Synthesis of Self-Supported Zn-Doped CuO Nanosheet Arrays for Efficient Nitrate Reduction to Ammonium

CuO has been regarded as a promising catalyst for the electrochemical reduction of nitrate (NO3 –RR) to ammonium (NH3); however, the intrinsic activity is greatly restricted by its poor electrical property. In this work, self-supported Zn-doped CuO nanosheet arrays (Zn–CuO NAs) are synthesized for N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-02, Vol.15 (4), p.5172-5179
Hauptverfasser: Du, Zhuzhu, Yang, Kai, Du, Hongfang, Li, Boxin, Wang, Ke, He, Song, Wang, Tingfeng, Ai, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5179
container_issue 4
container_start_page 5172
container_title ACS applied materials & interfaces
container_volume 15
creator Du, Zhuzhu
Yang, Kai
Du, Hongfang
Li, Boxin
Wang, Ke
He, Song
Wang, Tingfeng
Ai, Wei
description CuO has been regarded as a promising catalyst for the electrochemical reduction of nitrate (NO3 –RR) to ammonium (NH3); however, the intrinsic activity is greatly restricted by its poor electrical property. In this work, self-supported Zn-doped CuO nanosheet arrays (Zn–CuO NAs) are synthesized for NO3 –RR, where the Zn dopant regulates the electronic structure of CuO to significantly accelerate the interfacial charge transfer and inner electron transport kinetics. The Zn–CuO NAs are constructed by a one-step etching of commercial brass (Cu64Zn36 alloy) in 0.1 M NaOH solution, which experiences a corrosion–oxidation–reconstruction process. Initially, the brass undergoes a dealloying procedure to produce nanosized Cu, which is immediately oxidized to the Cu2O unit with a low valence state. Subsequently, Cu2O is further oxidized to the CuO unit and reconstructed into nanosheets with the coprecipitation of Zn2+. For NO3 –RR, Zn–CuO NAs show a high NH3 production rate of 945.1 μg h–1 cm–2 and a Faradaic efficiency of up to 95.6% at −0.7 V in 0.1 M Na2SO4 electrolyte with 0.01 M NaNO3, which outperforms the majority of the state-of-the-art catalysts. The present work offers a facile yet very efficient strategy for the scale-up synthesis of Zn–CuO NAs for high-performance NH3 production from NO3 –RR.
doi_str_mv 10.1021/acsami.2c19011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2766718875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766718875</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-4136846b729632e8f5945e9bb7b77abf28dfd0aa4aab4fbda07b01999ddd6db33</originalsourceid><addsrcrecordid>eNp1kM1L7DAUxYMo6lO3LiVLETombdq0y2H8eA9EwdGNm3LT3GCkTWqSLua_tzKju7e658LvHO49hJxztuAs59fQRRjsIu94wzjfI8e8ESKr8zLf_9VCHJE_MX4wVhU5Kw_JUVFVJWO1PCabO-hsjxScpusOelDzst649I7RRuoNXWNvsvU0jj4k1PTNZTd-nMVqeqKP4Hx8R0x0GQJsIjU-0FtjbGfRJfpoU4CE9Bn11CXrHU2eLofBOzsNp-TAQB_xbDdPyOvd7cvqb_bwdP9vtXzIoChYygQvqlpUSubNfD3WpmxEiY1SUkkJyuS1NpoBCAAljNLApGK8aRqtdaVVUZyQy23uGPznhDG1g40d9j049FNsc1lVkte1LGd0sUW74GMMaNox2AHCpuWs_a673dbd7uqeDRe77EkNqH_xn35n4GoLzMb2w0_Bza_-L-0LVsOLnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766718875</pqid></control><display><type>article</type><title>Facile and Scalable Synthesis of Self-Supported Zn-Doped CuO Nanosheet Arrays for Efficient Nitrate Reduction to Ammonium</title><source>ACS Publications</source><creator>Du, Zhuzhu ; Yang, Kai ; Du, Hongfang ; Li, Boxin ; Wang, Ke ; He, Song ; Wang, Tingfeng ; Ai, Wei</creator><creatorcontrib>Du, Zhuzhu ; Yang, Kai ; Du, Hongfang ; Li, Boxin ; Wang, Ke ; He, Song ; Wang, Tingfeng ; Ai, Wei</creatorcontrib><description>CuO has been regarded as a promising catalyst for the electrochemical reduction of nitrate (NO3 –RR) to ammonium (NH3); however, the intrinsic activity is greatly restricted by its poor electrical property. In this work, self-supported Zn-doped CuO nanosheet arrays (Zn–CuO NAs) are synthesized for NO3 –RR, where the Zn dopant regulates the electronic structure of CuO to significantly accelerate the interfacial charge transfer and inner electron transport kinetics. The Zn–CuO NAs are constructed by a one-step etching of commercial brass (Cu64Zn36 alloy) in 0.1 M NaOH solution, which experiences a corrosion–oxidation–reconstruction process. Initially, the brass undergoes a dealloying procedure to produce nanosized Cu, which is immediately oxidized to the Cu2O unit with a low valence state. Subsequently, Cu2O is further oxidized to the CuO unit and reconstructed into nanosheets with the coprecipitation of Zn2+. For NO3 –RR, Zn–CuO NAs show a high NH3 production rate of 945.1 μg h–1 cm–2 and a Faradaic efficiency of up to 95.6% at −0.7 V in 0.1 M Na2SO4 electrolyte with 0.01 M NaNO3, which outperforms the majority of the state-of-the-art catalysts. The present work offers a facile yet very efficient strategy for the scale-up synthesis of Zn–CuO NAs for high-performance NH3 production from NO3 –RR.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c19011</identifier><identifier>PMID: 36650087</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2023-02, Vol.15 (4), p.5172-5179</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-4136846b729632e8f5945e9bb7b77abf28dfd0aa4aab4fbda07b01999ddd6db33</citedby><cites>FETCH-LOGICAL-a330t-4136846b729632e8f5945e9bb7b77abf28dfd0aa4aab4fbda07b01999ddd6db33</cites><orcidid>0000-0002-2673-4008 ; 0000-0001-5827-1573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c19011$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c19011$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36650087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, Zhuzhu</creatorcontrib><creatorcontrib>Yang, Kai</creatorcontrib><creatorcontrib>Du, Hongfang</creatorcontrib><creatorcontrib>Li, Boxin</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>He, Song</creatorcontrib><creatorcontrib>Wang, Tingfeng</creatorcontrib><creatorcontrib>Ai, Wei</creatorcontrib><title>Facile and Scalable Synthesis of Self-Supported Zn-Doped CuO Nanosheet Arrays for Efficient Nitrate Reduction to Ammonium</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>CuO has been regarded as a promising catalyst for the electrochemical reduction of nitrate (NO3 –RR) to ammonium (NH3); however, the intrinsic activity is greatly restricted by its poor electrical property. In this work, self-supported Zn-doped CuO nanosheet arrays (Zn–CuO NAs) are synthesized for NO3 –RR, where the Zn dopant regulates the electronic structure of CuO to significantly accelerate the interfacial charge transfer and inner electron transport kinetics. The Zn–CuO NAs are constructed by a one-step etching of commercial brass (Cu64Zn36 alloy) in 0.1 M NaOH solution, which experiences a corrosion–oxidation–reconstruction process. Initially, the brass undergoes a dealloying procedure to produce nanosized Cu, which is immediately oxidized to the Cu2O unit with a low valence state. Subsequently, Cu2O is further oxidized to the CuO unit and reconstructed into nanosheets with the coprecipitation of Zn2+. For NO3 –RR, Zn–CuO NAs show a high NH3 production rate of 945.1 μg h–1 cm–2 and a Faradaic efficiency of up to 95.6% at −0.7 V in 0.1 M Na2SO4 electrolyte with 0.01 M NaNO3, which outperforms the majority of the state-of-the-art catalysts. The present work offers a facile yet very efficient strategy for the scale-up synthesis of Zn–CuO NAs for high-performance NH3 production from NO3 –RR.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1L7DAUxYMo6lO3LiVLETombdq0y2H8eA9EwdGNm3LT3GCkTWqSLua_tzKju7e658LvHO49hJxztuAs59fQRRjsIu94wzjfI8e8ESKr8zLf_9VCHJE_MX4wVhU5Kw_JUVFVJWO1PCabO-hsjxScpusOelDzst649I7RRuoNXWNvsvU0jj4k1PTNZTd-nMVqeqKP4Hx8R0x0GQJsIjU-0FtjbGfRJfpoU4CE9Bn11CXrHU2eLofBOzsNp-TAQB_xbDdPyOvd7cvqb_bwdP9vtXzIoChYygQvqlpUSubNfD3WpmxEiY1SUkkJyuS1NpoBCAAljNLApGK8aRqtdaVVUZyQy23uGPznhDG1g40d9j049FNsc1lVkte1LGd0sUW74GMMaNox2AHCpuWs_a673dbd7uqeDRe77EkNqH_xn35n4GoLzMb2w0_Bza_-L-0LVsOLnQ</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Du, Zhuzhu</creator><creator>Yang, Kai</creator><creator>Du, Hongfang</creator><creator>Li, Boxin</creator><creator>Wang, Ke</creator><creator>He, Song</creator><creator>Wang, Tingfeng</creator><creator>Ai, Wei</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2673-4008</orcidid><orcidid>https://orcid.org/0000-0001-5827-1573</orcidid></search><sort><creationdate>20230201</creationdate><title>Facile and Scalable Synthesis of Self-Supported Zn-Doped CuO Nanosheet Arrays for Efficient Nitrate Reduction to Ammonium</title><author>Du, Zhuzhu ; Yang, Kai ; Du, Hongfang ; Li, Boxin ; Wang, Ke ; He, Song ; Wang, Tingfeng ; Ai, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-4136846b729632e8f5945e9bb7b77abf28dfd0aa4aab4fbda07b01999ddd6db33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Zhuzhu</creatorcontrib><creatorcontrib>Yang, Kai</creatorcontrib><creatorcontrib>Du, Hongfang</creatorcontrib><creatorcontrib>Li, Boxin</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>He, Song</creatorcontrib><creatorcontrib>Wang, Tingfeng</creatorcontrib><creatorcontrib>Ai, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Zhuzhu</au><au>Yang, Kai</au><au>Du, Hongfang</au><au>Li, Boxin</au><au>Wang, Ke</au><au>He, Song</au><au>Wang, Tingfeng</au><au>Ai, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile and Scalable Synthesis of Self-Supported Zn-Doped CuO Nanosheet Arrays for Efficient Nitrate Reduction to Ammonium</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>15</volume><issue>4</issue><spage>5172</spage><epage>5179</epage><pages>5172-5179</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>CuO has been regarded as a promising catalyst for the electrochemical reduction of nitrate (NO3 –RR) to ammonium (NH3); however, the intrinsic activity is greatly restricted by its poor electrical property. In this work, self-supported Zn-doped CuO nanosheet arrays (Zn–CuO NAs) are synthesized for NO3 –RR, where the Zn dopant regulates the electronic structure of CuO to significantly accelerate the interfacial charge transfer and inner electron transport kinetics. The Zn–CuO NAs are constructed by a one-step etching of commercial brass (Cu64Zn36 alloy) in 0.1 M NaOH solution, which experiences a corrosion–oxidation–reconstruction process. Initially, the brass undergoes a dealloying procedure to produce nanosized Cu, which is immediately oxidized to the Cu2O unit with a low valence state. Subsequently, Cu2O is further oxidized to the CuO unit and reconstructed into nanosheets with the coprecipitation of Zn2+. For NO3 –RR, Zn–CuO NAs show a high NH3 production rate of 945.1 μg h–1 cm–2 and a Faradaic efficiency of up to 95.6% at −0.7 V in 0.1 M Na2SO4 electrolyte with 0.01 M NaNO3, which outperforms the majority of the state-of-the-art catalysts. The present work offers a facile yet very efficient strategy for the scale-up synthesis of Zn–CuO NAs for high-performance NH3 production from NO3 –RR.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36650087</pmid><doi>10.1021/acsami.2c19011</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2673-4008</orcidid><orcidid>https://orcid.org/0000-0001-5827-1573</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-02, Vol.15 (4), p.5172-5179
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2766718875
source ACS Publications
subjects Energy, Environmental, and Catalysis Applications
title Facile and Scalable Synthesis of Self-Supported Zn-Doped CuO Nanosheet Arrays for Efficient Nitrate Reduction to Ammonium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A48%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20and%20Scalable%20Synthesis%20of%20Self-Supported%20Zn-Doped%20CuO%20Nanosheet%20Arrays%20for%20Efficient%20Nitrate%20Reduction%20to%20Ammonium&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Du,%20Zhuzhu&rft.date=2023-02-01&rft.volume=15&rft.issue=4&rft.spage=5172&rft.epage=5179&rft.pages=5172-5179&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c19011&rft_dat=%3Cproquest_cross%3E2766718875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766718875&rft_id=info:pmid/36650087&rfr_iscdi=true