Parallel Computation of Flow in Heterogeneous Media Modelled by Mixed Finite Elements

In this paper we describe a fast parallel method for solving highly ill-conditioned saddle-point systems arising from mixed finite element simulations of stochastic partial differential equations (PDEs) modelling flow in heterogeneous media. Each realisation of these stochastic PDEs requires the sol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2000-11, Vol.164 (2), p.258-282
Hauptverfasser: Cliffe, K.A, Graham, I.G, Scheichl, R, Stals, L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 282
container_issue 2
container_start_page 258
container_title Journal of computational physics
container_volume 164
creator Cliffe, K.A
Graham, I.G
Scheichl, R
Stals, L
description In this paper we describe a fast parallel method for solving highly ill-conditioned saddle-point systems arising from mixed finite element simulations of stochastic partial differential equations (PDEs) modelling flow in heterogeneous media. Each realisation of these stochastic PDEs requires the solution of the linear first-order velocity–pressure system comprising Darcy's law coupled with an incompressibility constraint. The chief difficulty is that the permeability may be highly variable, especially when the statistical model has a large variance and a small correlation length. For reasonable accuracy, the discretisation has to be extremely fine. We solve these problems by first reducing the saddle-point formulation to a symmetric positive definite (SPD) problem using a suitable basis for the space of divergence-free velocities. The reduced problem is solved using parallel conjugate gradients preconditioned with an algebraically determined additive Schwarz domain decomposition preconditioner. The result is a solver which exhibits a good degree of robustness with respect to the mesh size as well as to the variance and to physically relevant values of the correlation length of the underlying permeability field. Numerical experiments exhibit almost optimal levels of parallel efficiency. The domain decomposition solver (DOUG, http://www.maths.bath.ac.uk/~parsoft) used here not only is applicable to this problem but can be used to solve general unstructured finite element systems on a wide range of parallel architectures.
doi_str_mv 10.1006/jcph.2000.6593
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27664718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999100965938</els_id><sourcerecordid>27664718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-502f54c639a64bed9fb5d9e6a1daa4f975aa8e70136b76523f9f0927f15e935e3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQRi0EEqWwMntiS7CT2I5HVLUUqRUMdLac5AyukjjYKdB_j0NZme6G752-ewjdUpJSQvj9vh7e04wQknIm8zM0o0SSJBOUn6MZIRlNpJT0El2FsI-pkhXlDO1etNdtCy1euG44jHq0rsfO4FXrvrDt8RpG8O4NenCHgLfQWI23roHINLg64q39jsvK9nYEvGyhg34M1-jC6DbAzd-co91q-bpYJ5vnx6fFwyapcyrGhJHMsKLmudS8qKCRpmKNBK5po3VhpGBalyAIzXklOMtyIw2RmTCUgcwZ5HN0d7o7ePdxgDCqzoY6dtO_dVUmOC8ELWMwPQVr70LwYNTgbaf9UVGiJntqsqcme2qyF4HyBECs_2nBq1Bb6Ov4v4d6VI2z_6E_VIF2aQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27664718</pqid></control><display><type>article</type><title>Parallel Computation of Flow in Heterogeneous Media Modelled by Mixed Finite Elements</title><source>Elsevier ScienceDirect Journals</source><creator>Cliffe, K.A ; Graham, I.G ; Scheichl, R ; Stals, L</creator><creatorcontrib>Cliffe, K.A ; Graham, I.G ; Scheichl, R ; Stals, L</creatorcontrib><description>In this paper we describe a fast parallel method for solving highly ill-conditioned saddle-point systems arising from mixed finite element simulations of stochastic partial differential equations (PDEs) modelling flow in heterogeneous media. Each realisation of these stochastic PDEs requires the solution of the linear first-order velocity–pressure system comprising Darcy's law coupled with an incompressibility constraint. The chief difficulty is that the permeability may be highly variable, especially when the statistical model has a large variance and a small correlation length. For reasonable accuracy, the discretisation has to be extremely fine. We solve these problems by first reducing the saddle-point formulation to a symmetric positive definite (SPD) problem using a suitable basis for the space of divergence-free velocities. The reduced problem is solved using parallel conjugate gradients preconditioned with an algebraically determined additive Schwarz domain decomposition preconditioner. The result is a solver which exhibits a good degree of robustness with respect to the mesh size as well as to the variance and to physically relevant values of the correlation length of the underlying permeability field. Numerical experiments exhibit almost optimal levels of parallel efficiency. The domain decomposition solver (DOUG, http://www.maths.bath.ac.uk/~parsoft) used here not only is applicable to this problem but can be used to solve general unstructured finite element systems on a wide range of parallel architectures.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1006/jcph.2000.6593</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of computational physics, 2000-11, Vol.164 (2), p.258-282</ispartof><rights>2000 Academic Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-502f54c639a64bed9fb5d9e6a1daa4f975aa8e70136b76523f9f0927f15e935e3</citedby><cites>FETCH-LOGICAL-c317t-502f54c639a64bed9fb5d9e6a1daa4f975aa8e70136b76523f9f0927f15e935e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999100965938$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Cliffe, K.A</creatorcontrib><creatorcontrib>Graham, I.G</creatorcontrib><creatorcontrib>Scheichl, R</creatorcontrib><creatorcontrib>Stals, L</creatorcontrib><title>Parallel Computation of Flow in Heterogeneous Media Modelled by Mixed Finite Elements</title><title>Journal of computational physics</title><description>In this paper we describe a fast parallel method for solving highly ill-conditioned saddle-point systems arising from mixed finite element simulations of stochastic partial differential equations (PDEs) modelling flow in heterogeneous media. Each realisation of these stochastic PDEs requires the solution of the linear first-order velocity–pressure system comprising Darcy's law coupled with an incompressibility constraint. The chief difficulty is that the permeability may be highly variable, especially when the statistical model has a large variance and a small correlation length. For reasonable accuracy, the discretisation has to be extremely fine. We solve these problems by first reducing the saddle-point formulation to a symmetric positive definite (SPD) problem using a suitable basis for the space of divergence-free velocities. The reduced problem is solved using parallel conjugate gradients preconditioned with an algebraically determined additive Schwarz domain decomposition preconditioner. The result is a solver which exhibits a good degree of robustness with respect to the mesh size as well as to the variance and to physically relevant values of the correlation length of the underlying permeability field. Numerical experiments exhibit almost optimal levels of parallel efficiency. The domain decomposition solver (DOUG, http://www.maths.bath.ac.uk/~parsoft) used here not only is applicable to this problem but can be used to solve general unstructured finite element systems on a wide range of parallel architectures.</description><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQRi0EEqWwMntiS7CT2I5HVLUUqRUMdLac5AyukjjYKdB_j0NZme6G752-ewjdUpJSQvj9vh7e04wQknIm8zM0o0SSJBOUn6MZIRlNpJT0El2FsI-pkhXlDO1etNdtCy1euG44jHq0rsfO4FXrvrDt8RpG8O4NenCHgLfQWI23roHINLg64q39jsvK9nYEvGyhg34M1-jC6DbAzd-co91q-bpYJ5vnx6fFwyapcyrGhJHMsKLmudS8qKCRpmKNBK5po3VhpGBalyAIzXklOMtyIw2RmTCUgcwZ5HN0d7o7ePdxgDCqzoY6dtO_dVUmOC8ELWMwPQVr70LwYNTgbaf9UVGiJntqsqcme2qyF4HyBECs_2nBq1Bb6Ov4v4d6VI2z_6E_VIF2aQ</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>Cliffe, K.A</creator><creator>Graham, I.G</creator><creator>Scheichl, R</creator><creator>Stals, L</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20001101</creationdate><title>Parallel Computation of Flow in Heterogeneous Media Modelled by Mixed Finite Elements</title><author>Cliffe, K.A ; Graham, I.G ; Scheichl, R ; Stals, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-502f54c639a64bed9fb5d9e6a1daa4f975aa8e70136b76523f9f0927f15e935e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cliffe, K.A</creatorcontrib><creatorcontrib>Graham, I.G</creatorcontrib><creatorcontrib>Scheichl, R</creatorcontrib><creatorcontrib>Stals, L</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cliffe, K.A</au><au>Graham, I.G</au><au>Scheichl, R</au><au>Stals, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel Computation of Flow in Heterogeneous Media Modelled by Mixed Finite Elements</atitle><jtitle>Journal of computational physics</jtitle><date>2000-11-01</date><risdate>2000</risdate><volume>164</volume><issue>2</issue><spage>258</spage><epage>282</epage><pages>258-282</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>In this paper we describe a fast parallel method for solving highly ill-conditioned saddle-point systems arising from mixed finite element simulations of stochastic partial differential equations (PDEs) modelling flow in heterogeneous media. Each realisation of these stochastic PDEs requires the solution of the linear first-order velocity–pressure system comprising Darcy's law coupled with an incompressibility constraint. The chief difficulty is that the permeability may be highly variable, especially when the statistical model has a large variance and a small correlation length. For reasonable accuracy, the discretisation has to be extremely fine. We solve these problems by first reducing the saddle-point formulation to a symmetric positive definite (SPD) problem using a suitable basis for the space of divergence-free velocities. The reduced problem is solved using parallel conjugate gradients preconditioned with an algebraically determined additive Schwarz domain decomposition preconditioner. The result is a solver which exhibits a good degree of robustness with respect to the mesh size as well as to the variance and to physically relevant values of the correlation length of the underlying permeability field. Numerical experiments exhibit almost optimal levels of parallel efficiency. The domain decomposition solver (DOUG, http://www.maths.bath.ac.uk/~parsoft) used here not only is applicable to this problem but can be used to solve general unstructured finite element systems on a wide range of parallel architectures.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jcph.2000.6593</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2000-11, Vol.164 (2), p.258-282
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_27664718
source Elsevier ScienceDirect Journals
title Parallel Computation of Flow in Heterogeneous Media Modelled by Mixed Finite Elements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20Computation%20of%20Flow%20in%20Heterogeneous%20Media%20Modelled%20by%20Mixed%20Finite%20Elements&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Cliffe,%20K.A&rft.date=2000-11-01&rft.volume=164&rft.issue=2&rft.spage=258&rft.epage=282&rft.pages=258-282&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1006/jcph.2000.6593&rft_dat=%3Cproquest_cross%3E27664718%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27664718&rft_id=info:pmid/&rft_els_id=S0021999100965938&rfr_iscdi=true