Determining interchromophore effects for energy transport in molecular networks using machine-learning algorithms

Nature uses chromophore networks, with highly optimized structural and energetic characteristics, to perform important chemical functions. Due to its modularity, predictable aggregation characteristics, and established synthetic protocols, structural DNA nanotechnology is a promising medium for arra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-02, Vol.25 (5), p.3651-3665
Hauptverfasser: Rolczynski, Brian S, Díaz, Sebastián A, Kim, Young C, Mathur, Divita, Klein, William P, Medintz, Igor L, Melinger, Joseph S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3665
container_issue 5
container_start_page 3651
container_title Physical chemistry chemical physics : PCCP
container_volume 25
creator Rolczynski, Brian S
Díaz, Sebastián A
Kim, Young C
Mathur, Divita
Klein, William P
Medintz, Igor L
Melinger, Joseph S
description Nature uses chromophore networks, with highly optimized structural and energetic characteristics, to perform important chemical functions. Due to its modularity, predictable aggregation characteristics, and established synthetic protocols, structural DNA nanotechnology is a promising medium for arranging chromophore networks with analogous structural and energetic controls. However, this high level of control creates a greater need to know how to optimize the systems precisely. This study uses the system's modularity to produce variations of a coupled 14-Site chromophore network. It uses machine-learning algorithms and spectroscopy measurements to reveal the energy-transport roles of these Sites, paying particular attention to the cooperative and inhibitive effects they impose on each other for transport across the network. The physical significance of these patterns is contextualized, using molecular dynamics simulations and energy-transport modeling. This analysis yields insights about how energy transfers across the Donor-Relay and Relay-Acceptor interfaces, as well as the energy-transport pathways through the homogeneous Relay segment. Overall, this report establishes an approach that uses machine-learning methods to understand, in fine detail, the role that each Site plays in an optoelectronic molecular network. Structural DNA nanotechnology provides structural control in molecular networks. Machine-learning algorithms are used to understand energy-transport in these tightly controlled systems.
doi_str_mv 10.1039/d2cp04960k
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2766432846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766432846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-4a54ddda88bd29f5730c76555a8f2fccf8bf42164358e86a12c09fb9d2b5f763</originalsourceid><addsrcrecordid>eNpdkktv1TAQhS0EoqWwYQ-KxKZCCvgVJ15V6JaXqASL7iPHGd-4Tex0nID67-vbWy6PlUeaT2fOnDEhLxl9x6jQ73tuZyq1otePyDGTSpSaNvLxoa7VEXmW0hWllFVMPCVHQinZcE2Pyc05LICTDz5sCx9ybQeMU5yHiFCAc2CXVLiIBQTA7W2xoAlpjrhkupjiCHYdDRYBll8Rr1Oxpp3SZOzgA5QjGLyXNuM2ol-GKT0nT5wZE7x4eE_I5aePl5sv5cX3z183Hy5KK7leSmkq2fe9aZqu59pVtaC2VlVVmcZxZ61rOic5U1JUDTTKMG6pdp3ueVe5WokTcraXnddugt5CyM7HdkY_Gbxto_Htv53gh3Ybf7Y50pyl4lnh9EEB480KaWknnyyMowkQ19TyOqcoeCN3w978h17FFUNeL1M147WuNcvU2z1lMaaE4A5uGN2N1e053_y4v-S3DL_-2_8B_X26DLzaA5jsofvnK4g7E1mm-A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771279791</pqid></control><display><type>article</type><title>Determining interchromophore effects for energy transport in molecular networks using machine-learning algorithms</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Rolczynski, Brian S ; Díaz, Sebastián A ; Kim, Young C ; Mathur, Divita ; Klein, William P ; Medintz, Igor L ; Melinger, Joseph S</creator><creatorcontrib>Rolczynski, Brian S ; Díaz, Sebastián A ; Kim, Young C ; Mathur, Divita ; Klein, William P ; Medintz, Igor L ; Melinger, Joseph S</creatorcontrib><description>Nature uses chromophore networks, with highly optimized structural and energetic characteristics, to perform important chemical functions. Due to its modularity, predictable aggregation characteristics, and established synthetic protocols, structural DNA nanotechnology is a promising medium for arranging chromophore networks with analogous structural and energetic controls. However, this high level of control creates a greater need to know how to optimize the systems precisely. This study uses the system's modularity to produce variations of a coupled 14-Site chromophore network. It uses machine-learning algorithms and spectroscopy measurements to reveal the energy-transport roles of these Sites, paying particular attention to the cooperative and inhibitive effects they impose on each other for transport across the network. The physical significance of these patterns is contextualized, using molecular dynamics simulations and energy-transport modeling. This analysis yields insights about how energy transfers across the Donor-Relay and Relay-Acceptor interfaces, as well as the energy-transport pathways through the homogeneous Relay segment. Overall, this report establishes an approach that uses machine-learning methods to understand, in fine detail, the role that each Site plays in an optoelectronic molecular network. Structural DNA nanotechnology provides structural control in molecular networks. Machine-learning algorithms are used to understand energy-transport in these tightly controlled systems.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d2cp04960k</identifier><identifier>PMID: 36648290</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Algorithms ; Chromophores ; Energy transfer ; Machine learning ; Modularity ; Molecular dynamics ; Networks ; Optoelectronics ; Relay</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-02, Vol.25 (5), p.3651-3665</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-4a54ddda88bd29f5730c76555a8f2fccf8bf42164358e86a12c09fb9d2b5f763</citedby><cites>FETCH-LOGICAL-c429t-4a54ddda88bd29f5730c76555a8f2fccf8bf42164358e86a12c09fb9d2b5f763</cites><orcidid>0000-0002-3537-7292 ; 0000-0002-5568-0512 ; 0000-0002-2452-5245 ; 0000-0002-8902-4687 ; 0000-0002-8783-1266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36648290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rolczynski, Brian S</creatorcontrib><creatorcontrib>Díaz, Sebastián A</creatorcontrib><creatorcontrib>Kim, Young C</creatorcontrib><creatorcontrib>Mathur, Divita</creatorcontrib><creatorcontrib>Klein, William P</creatorcontrib><creatorcontrib>Medintz, Igor L</creatorcontrib><creatorcontrib>Melinger, Joseph S</creatorcontrib><title>Determining interchromophore effects for energy transport in molecular networks using machine-learning algorithms</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Nature uses chromophore networks, with highly optimized structural and energetic characteristics, to perform important chemical functions. Due to its modularity, predictable aggregation characteristics, and established synthetic protocols, structural DNA nanotechnology is a promising medium for arranging chromophore networks with analogous structural and energetic controls. However, this high level of control creates a greater need to know how to optimize the systems precisely. This study uses the system's modularity to produce variations of a coupled 14-Site chromophore network. It uses machine-learning algorithms and spectroscopy measurements to reveal the energy-transport roles of these Sites, paying particular attention to the cooperative and inhibitive effects they impose on each other for transport across the network. The physical significance of these patterns is contextualized, using molecular dynamics simulations and energy-transport modeling. This analysis yields insights about how energy transfers across the Donor-Relay and Relay-Acceptor interfaces, as well as the energy-transport pathways through the homogeneous Relay segment. Overall, this report establishes an approach that uses machine-learning methods to understand, in fine detail, the role that each Site plays in an optoelectronic molecular network. Structural DNA nanotechnology provides structural control in molecular networks. Machine-learning algorithms are used to understand energy-transport in these tightly controlled systems.</description><subject>Algorithms</subject><subject>Chromophores</subject><subject>Energy transfer</subject><subject>Machine learning</subject><subject>Modularity</subject><subject>Molecular dynamics</subject><subject>Networks</subject><subject>Optoelectronics</subject><subject>Relay</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkktv1TAQhS0EoqWwYQ-KxKZCCvgVJ15V6JaXqASL7iPHGd-4Tex0nID67-vbWy6PlUeaT2fOnDEhLxl9x6jQ73tuZyq1otePyDGTSpSaNvLxoa7VEXmW0hWllFVMPCVHQinZcE2Pyc05LICTDz5sCx9ybQeMU5yHiFCAc2CXVLiIBQTA7W2xoAlpjrhkupjiCHYdDRYBll8Rr1Oxpp3SZOzgA5QjGLyXNuM2ol-GKT0nT5wZE7x4eE_I5aePl5sv5cX3z183Hy5KK7leSmkq2fe9aZqu59pVtaC2VlVVmcZxZ61rOic5U1JUDTTKMG6pdp3ueVe5WokTcraXnddugt5CyM7HdkY_Gbxto_Htv53gh3Ybf7Y50pyl4lnh9EEB480KaWknnyyMowkQ19TyOqcoeCN3w978h17FFUNeL1M147WuNcvU2z1lMaaE4A5uGN2N1e053_y4v-S3DL_-2_8B_X26DLzaA5jsofvnK4g7E1mm-A</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Rolczynski, Brian S</creator><creator>Díaz, Sebastián A</creator><creator>Kim, Young C</creator><creator>Mathur, Divita</creator><creator>Klein, William P</creator><creator>Medintz, Igor L</creator><creator>Melinger, Joseph S</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3537-7292</orcidid><orcidid>https://orcid.org/0000-0002-5568-0512</orcidid><orcidid>https://orcid.org/0000-0002-2452-5245</orcidid><orcidid>https://orcid.org/0000-0002-8902-4687</orcidid><orcidid>https://orcid.org/0000-0002-8783-1266</orcidid></search><sort><creationdate>20230201</creationdate><title>Determining interchromophore effects for energy transport in molecular networks using machine-learning algorithms</title><author>Rolczynski, Brian S ; Díaz, Sebastián A ; Kim, Young C ; Mathur, Divita ; Klein, William P ; Medintz, Igor L ; Melinger, Joseph S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-4a54ddda88bd29f5730c76555a8f2fccf8bf42164358e86a12c09fb9d2b5f763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Chromophores</topic><topic>Energy transfer</topic><topic>Machine learning</topic><topic>Modularity</topic><topic>Molecular dynamics</topic><topic>Networks</topic><topic>Optoelectronics</topic><topic>Relay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rolczynski, Brian S</creatorcontrib><creatorcontrib>Díaz, Sebastián A</creatorcontrib><creatorcontrib>Kim, Young C</creatorcontrib><creatorcontrib>Mathur, Divita</creatorcontrib><creatorcontrib>Klein, William P</creatorcontrib><creatorcontrib>Medintz, Igor L</creatorcontrib><creatorcontrib>Melinger, Joseph S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rolczynski, Brian S</au><au>Díaz, Sebastián A</au><au>Kim, Young C</au><au>Mathur, Divita</au><au>Klein, William P</au><au>Medintz, Igor L</au><au>Melinger, Joseph S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining interchromophore effects for energy transport in molecular networks using machine-learning algorithms</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>25</volume><issue>5</issue><spage>3651</spage><epage>3665</epage><pages>3651-3665</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Nature uses chromophore networks, with highly optimized structural and energetic characteristics, to perform important chemical functions. Due to its modularity, predictable aggregation characteristics, and established synthetic protocols, structural DNA nanotechnology is a promising medium for arranging chromophore networks with analogous structural and energetic controls. However, this high level of control creates a greater need to know how to optimize the systems precisely. This study uses the system's modularity to produce variations of a coupled 14-Site chromophore network. It uses machine-learning algorithms and spectroscopy measurements to reveal the energy-transport roles of these Sites, paying particular attention to the cooperative and inhibitive effects they impose on each other for transport across the network. The physical significance of these patterns is contextualized, using molecular dynamics simulations and energy-transport modeling. This analysis yields insights about how energy transfers across the Donor-Relay and Relay-Acceptor interfaces, as well as the energy-transport pathways through the homogeneous Relay segment. Overall, this report establishes an approach that uses machine-learning methods to understand, in fine detail, the role that each Site plays in an optoelectronic molecular network. Structural DNA nanotechnology provides structural control in molecular networks. Machine-learning algorithms are used to understand energy-transport in these tightly controlled systems.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>36648290</pmid><doi>10.1039/d2cp04960k</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3537-7292</orcidid><orcidid>https://orcid.org/0000-0002-5568-0512</orcidid><orcidid>https://orcid.org/0000-0002-2452-5245</orcidid><orcidid>https://orcid.org/0000-0002-8902-4687</orcidid><orcidid>https://orcid.org/0000-0002-8783-1266</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2023-02, Vol.25 (5), p.3651-3665
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2766432846
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Algorithms
Chromophores
Energy transfer
Machine learning
Modularity
Molecular dynamics
Networks
Optoelectronics
Relay
title Determining interchromophore effects for energy transport in molecular networks using machine-learning algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20interchromophore%20effects%20for%20energy%20transport%20in%20molecular%20networks%20using%20machine-learning%20algorithms&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Rolczynski,%20Brian%20S&rft.date=2023-02-01&rft.volume=25&rft.issue=5&rft.spage=3651&rft.epage=3665&rft.pages=3651-3665&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d2cp04960k&rft_dat=%3Cproquest_pubme%3E2766432846%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771279791&rft_id=info:pmid/36648290&rfr_iscdi=true