Mechanical Properties of a 3 Dimensional–Printed Transparent Flexible Resin Used for Vascular Model Simulation Compared with Those of Porcine Arteries

To develop a vascular intervention simulation model that replicates the characteristics of a human patient and to compare the mechanical properties of a 3-dimensional (3D)–printed transparent flexible resin with those of porcine arteries using the elastic modulus (E) and kinetic friction coefficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vascular and interventional radiology 2023-05, Vol.34 (5), p.871-878.e3
Hauptverfasser: Morita, Ryo, Nonoyama, Takayuki, Abo, Daisuke, Soyama, Takeshi, Fujima, Noriyuki, Imai, Tetsuaki, Hamaguchi, Hiroyuki, Kameda, Takuto, Sugita, Osamu, Takahashi, Bunya, Kinota, Naoya, Kudo, Kohsuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 878.e3
container_issue 5
container_start_page 871
container_title Journal of vascular and interventional radiology
container_volume 34
creator Morita, Ryo
Nonoyama, Takayuki
Abo, Daisuke
Soyama, Takeshi
Fujima, Noriyuki
Imai, Tetsuaki
Hamaguchi, Hiroyuki
Kameda, Takuto
Sugita, Osamu
Takahashi, Bunya
Kinota, Naoya
Kudo, Kohsuke
description To develop a vascular intervention simulation model that replicates the characteristics of a human patient and to compare the mechanical properties of a 3-dimensional (3D)–printed transparent flexible resin with those of porcine arteries using the elastic modulus (E) and kinetic friction coefficient (μk). Resin plates were created from a transparent flexible resin using a 3D printer. Porcine artery plates were prepared by excising the aorta. E values and the adhesive strengths of the resin and arterial surfaces toward a polyethylene plate, were measured with a tensile-compressive mechanical tester. Resin transparency was measured using an ultraviolet-visible light spectrometer. The μk value of the resin plate surface after applying silicone spray for 1–5 seconds and that of the artery were measured using a translational friction tester. E values differed significantly between the arteries and resin plates at each curing time (0.20 MPa ± 0.04 vs 8.53 MPa ± 2.37 for a curing time of 1 minute; P < .05). The resin was stiffer than the arteries, regardless of the curing times. The visible light transmittance and adhesive strength of the resin decreased as the curing time increased. The adhesive strength of the artery was the lowest. The μk value of the silicone-coated resin surface created by applying silicone for 2–3 seconds (thickness of the silicone layer, 1.6–2.0 μm) was comparable with that of the artery, indicating that the coating imparted a similar slippage to the resin as to the living artery. A transparent flexible resin is useful for creating a transparent and slippery vascular model for vascular intervention simulation. [Display omitted]
doi_str_mv 10.1016/j.jvir.2023.01.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2766430219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S105104432300012X</els_id><sourcerecordid>2766430219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-5d66c274232ebf781f3186a50a1d84eed4759ef0ef67410df1c1908f37b670973</originalsourceid><addsrcrecordid>eNp9kc1uEzEUhS0EoqXwAiyQl2xm8M-MPZHYVCktSK2IIGVrOfa14mjGDrZTYNd3YMPz8SR4lMISeWFb_s7xvfcg9JKSlhIq3uza3Z1PLSOMt4S2hAyP0Cnted9IydnjeiY9bUjX8RP0LOcdqURdT9EJF6ITjMhT9OsGzFYHb_SIVynuIRUPGUeHNeb4wk8Qso9Bj7_vf66SDwUsXicd8l4nCAVfjvDdb0bAnyD7gG9zfXcx4S86m8OoE76JFkb82U_1VqoTXsZp1lr8zZctXm9jhvm7VUzGB8DnqUCqJTxHT5weM7x42M_Q7eW79fJ9c_3x6sPy_LoxnRCl6a0QhsmOcQYbJwfqOB2E7ommdugAbCf7BTgCTsiOEuuooQsyOC43QpKF5Gfo9dF3n-LXA-SiJp8NjKMOEA9ZMVlnxQmji4qyI2pSzDmBU_vkJ51-KErUnIjaqTkRNSeiCFV13lX06sH_sJnA_pP8jaACb48A1C7vPCSVjYdgwPoEpigb_f_8_wApW59t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766430219</pqid></control><display><type>article</type><title>Mechanical Properties of a 3 Dimensional–Printed Transparent Flexible Resin Used for Vascular Model Simulation Compared with Those of Porcine Arteries</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Morita, Ryo ; Nonoyama, Takayuki ; Abo, Daisuke ; Soyama, Takeshi ; Fujima, Noriyuki ; Imai, Tetsuaki ; Hamaguchi, Hiroyuki ; Kameda, Takuto ; Sugita, Osamu ; Takahashi, Bunya ; Kinota, Naoya ; Kudo, Kohsuke</creator><creatorcontrib>Morita, Ryo ; Nonoyama, Takayuki ; Abo, Daisuke ; Soyama, Takeshi ; Fujima, Noriyuki ; Imai, Tetsuaki ; Hamaguchi, Hiroyuki ; Kameda, Takuto ; Sugita, Osamu ; Takahashi, Bunya ; Kinota, Naoya ; Kudo, Kohsuke</creatorcontrib><description>To develop a vascular intervention simulation model that replicates the characteristics of a human patient and to compare the mechanical properties of a 3-dimensional (3D)–printed transparent flexible resin with those of porcine arteries using the elastic modulus (E) and kinetic friction coefficient (μk). Resin plates were created from a transparent flexible resin using a 3D printer. Porcine artery plates were prepared by excising the aorta. E values and the adhesive strengths of the resin and arterial surfaces toward a polyethylene plate, were measured with a tensile-compressive mechanical tester. Resin transparency was measured using an ultraviolet-visible light spectrometer. The μk value of the resin plate surface after applying silicone spray for 1–5 seconds and that of the artery were measured using a translational friction tester. E values differed significantly between the arteries and resin plates at each curing time (0.20 MPa ± 0.04 vs 8.53 MPa ± 2.37 for a curing time of 1 minute; P &lt; .05). The resin was stiffer than the arteries, regardless of the curing times. The visible light transmittance and adhesive strength of the resin decreased as the curing time increased. The adhesive strength of the artery was the lowest. The μk value of the silicone-coated resin surface created by applying silicone for 2–3 seconds (thickness of the silicone layer, 1.6–2.0 μm) was comparable with that of the artery, indicating that the coating imparted a similar slippage to the resin as to the living artery. A transparent flexible resin is useful for creating a transparent and slippery vascular model for vascular intervention simulation. [Display omitted]</description><identifier>ISSN: 1051-0443</identifier><identifier>EISSN: 1535-7732</identifier><identifier>DOI: 10.1016/j.jvir.2023.01.008</identifier><identifier>PMID: 36646207</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Arteries ; Humans ; Light ; Materials Testing ; Silicones ; Surface Properties ; Swine ; Tensile Strength</subject><ispartof>Journal of vascular and interventional radiology, 2023-05, Vol.34 (5), p.871-878.e3</ispartof><rights>2023 SIR</rights><rights>Copyright © 2023 SIR. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-5d66c274232ebf781f3186a50a1d84eed4759ef0ef67410df1c1908f37b670973</citedby><cites>FETCH-LOGICAL-c466t-5d66c274232ebf781f3186a50a1d84eed4759ef0ef67410df1c1908f37b670973</cites><orcidid>0000-0001-9021-347X ; 0000-0001-5351-9242 ; 0000-0002-2843-7736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jvir.2023.01.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36646207$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morita, Ryo</creatorcontrib><creatorcontrib>Nonoyama, Takayuki</creatorcontrib><creatorcontrib>Abo, Daisuke</creatorcontrib><creatorcontrib>Soyama, Takeshi</creatorcontrib><creatorcontrib>Fujima, Noriyuki</creatorcontrib><creatorcontrib>Imai, Tetsuaki</creatorcontrib><creatorcontrib>Hamaguchi, Hiroyuki</creatorcontrib><creatorcontrib>Kameda, Takuto</creatorcontrib><creatorcontrib>Sugita, Osamu</creatorcontrib><creatorcontrib>Takahashi, Bunya</creatorcontrib><creatorcontrib>Kinota, Naoya</creatorcontrib><creatorcontrib>Kudo, Kohsuke</creatorcontrib><title>Mechanical Properties of a 3 Dimensional–Printed Transparent Flexible Resin Used for Vascular Model Simulation Compared with Those of Porcine Arteries</title><title>Journal of vascular and interventional radiology</title><addtitle>J Vasc Interv Radiol</addtitle><description>To develop a vascular intervention simulation model that replicates the characteristics of a human patient and to compare the mechanical properties of a 3-dimensional (3D)–printed transparent flexible resin with those of porcine arteries using the elastic modulus (E) and kinetic friction coefficient (μk). Resin plates were created from a transparent flexible resin using a 3D printer. Porcine artery plates were prepared by excising the aorta. E values and the adhesive strengths of the resin and arterial surfaces toward a polyethylene plate, were measured with a tensile-compressive mechanical tester. Resin transparency was measured using an ultraviolet-visible light spectrometer. The μk value of the resin plate surface after applying silicone spray for 1–5 seconds and that of the artery were measured using a translational friction tester. E values differed significantly between the arteries and resin plates at each curing time (0.20 MPa ± 0.04 vs 8.53 MPa ± 2.37 for a curing time of 1 minute; P &lt; .05). The resin was stiffer than the arteries, regardless of the curing times. The visible light transmittance and adhesive strength of the resin decreased as the curing time increased. The adhesive strength of the artery was the lowest. The μk value of the silicone-coated resin surface created by applying silicone for 2–3 seconds (thickness of the silicone layer, 1.6–2.0 μm) was comparable with that of the artery, indicating that the coating imparted a similar slippage to the resin as to the living artery. A transparent flexible resin is useful for creating a transparent and slippery vascular model for vascular intervention simulation. [Display omitted]</description><subject>Animals</subject><subject>Arteries</subject><subject>Humans</subject><subject>Light</subject><subject>Materials Testing</subject><subject>Silicones</subject><subject>Surface Properties</subject><subject>Swine</subject><subject>Tensile Strength</subject><issn>1051-0443</issn><issn>1535-7732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1uEzEUhS0EoqXwAiyQl2xm8M-MPZHYVCktSK2IIGVrOfa14mjGDrZTYNd3YMPz8SR4lMISeWFb_s7xvfcg9JKSlhIq3uza3Z1PLSOMt4S2hAyP0Cnted9IydnjeiY9bUjX8RP0LOcdqURdT9EJF6ITjMhT9OsGzFYHb_SIVynuIRUPGUeHNeb4wk8Qso9Bj7_vf66SDwUsXicd8l4nCAVfjvDdb0bAnyD7gG9zfXcx4S86m8OoE76JFkb82U_1VqoTXsZp1lr8zZctXm9jhvm7VUzGB8DnqUCqJTxHT5weM7x42M_Q7eW79fJ9c_3x6sPy_LoxnRCl6a0QhsmOcQYbJwfqOB2E7ommdugAbCf7BTgCTsiOEuuooQsyOC43QpKF5Gfo9dF3n-LXA-SiJp8NjKMOEA9ZMVlnxQmji4qyI2pSzDmBU_vkJ51-KErUnIjaqTkRNSeiCFV13lX06sH_sJnA_pP8jaACb48A1C7vPCSVjYdgwPoEpigb_f_8_wApW59t</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Morita, Ryo</creator><creator>Nonoyama, Takayuki</creator><creator>Abo, Daisuke</creator><creator>Soyama, Takeshi</creator><creator>Fujima, Noriyuki</creator><creator>Imai, Tetsuaki</creator><creator>Hamaguchi, Hiroyuki</creator><creator>Kameda, Takuto</creator><creator>Sugita, Osamu</creator><creator>Takahashi, Bunya</creator><creator>Kinota, Naoya</creator><creator>Kudo, Kohsuke</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9021-347X</orcidid><orcidid>https://orcid.org/0000-0001-5351-9242</orcidid><orcidid>https://orcid.org/0000-0002-2843-7736</orcidid></search><sort><creationdate>202305</creationdate><title>Mechanical Properties of a 3 Dimensional–Printed Transparent Flexible Resin Used for Vascular Model Simulation Compared with Those of Porcine Arteries</title><author>Morita, Ryo ; Nonoyama, Takayuki ; Abo, Daisuke ; Soyama, Takeshi ; Fujima, Noriyuki ; Imai, Tetsuaki ; Hamaguchi, Hiroyuki ; Kameda, Takuto ; Sugita, Osamu ; Takahashi, Bunya ; Kinota, Naoya ; Kudo, Kohsuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-5d66c274232ebf781f3186a50a1d84eed4759ef0ef67410df1c1908f37b670973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Arteries</topic><topic>Humans</topic><topic>Light</topic><topic>Materials Testing</topic><topic>Silicones</topic><topic>Surface Properties</topic><topic>Swine</topic><topic>Tensile Strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morita, Ryo</creatorcontrib><creatorcontrib>Nonoyama, Takayuki</creatorcontrib><creatorcontrib>Abo, Daisuke</creatorcontrib><creatorcontrib>Soyama, Takeshi</creatorcontrib><creatorcontrib>Fujima, Noriyuki</creatorcontrib><creatorcontrib>Imai, Tetsuaki</creatorcontrib><creatorcontrib>Hamaguchi, Hiroyuki</creatorcontrib><creatorcontrib>Kameda, Takuto</creatorcontrib><creatorcontrib>Sugita, Osamu</creatorcontrib><creatorcontrib>Takahashi, Bunya</creatorcontrib><creatorcontrib>Kinota, Naoya</creatorcontrib><creatorcontrib>Kudo, Kohsuke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of vascular and interventional radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morita, Ryo</au><au>Nonoyama, Takayuki</au><au>Abo, Daisuke</au><au>Soyama, Takeshi</au><au>Fujima, Noriyuki</au><au>Imai, Tetsuaki</au><au>Hamaguchi, Hiroyuki</au><au>Kameda, Takuto</au><au>Sugita, Osamu</au><au>Takahashi, Bunya</au><au>Kinota, Naoya</au><au>Kudo, Kohsuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Properties of a 3 Dimensional–Printed Transparent Flexible Resin Used for Vascular Model Simulation Compared with Those of Porcine Arteries</atitle><jtitle>Journal of vascular and interventional radiology</jtitle><addtitle>J Vasc Interv Radiol</addtitle><date>2023-05</date><risdate>2023</risdate><volume>34</volume><issue>5</issue><spage>871</spage><epage>878.e3</epage><pages>871-878.e3</pages><issn>1051-0443</issn><eissn>1535-7732</eissn><abstract>To develop a vascular intervention simulation model that replicates the characteristics of a human patient and to compare the mechanical properties of a 3-dimensional (3D)–printed transparent flexible resin with those of porcine arteries using the elastic modulus (E) and kinetic friction coefficient (μk). Resin plates were created from a transparent flexible resin using a 3D printer. Porcine artery plates were prepared by excising the aorta. E values and the adhesive strengths of the resin and arterial surfaces toward a polyethylene plate, were measured with a tensile-compressive mechanical tester. Resin transparency was measured using an ultraviolet-visible light spectrometer. The μk value of the resin plate surface after applying silicone spray for 1–5 seconds and that of the artery were measured using a translational friction tester. E values differed significantly between the arteries and resin plates at each curing time (0.20 MPa ± 0.04 vs 8.53 MPa ± 2.37 for a curing time of 1 minute; P &lt; .05). The resin was stiffer than the arteries, regardless of the curing times. The visible light transmittance and adhesive strength of the resin decreased as the curing time increased. The adhesive strength of the artery was the lowest. The μk value of the silicone-coated resin surface created by applying silicone for 2–3 seconds (thickness of the silicone layer, 1.6–2.0 μm) was comparable with that of the artery, indicating that the coating imparted a similar slippage to the resin as to the living artery. A transparent flexible resin is useful for creating a transparent and slippery vascular model for vascular intervention simulation. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36646207</pmid><doi>10.1016/j.jvir.2023.01.008</doi><orcidid>https://orcid.org/0000-0001-9021-347X</orcidid><orcidid>https://orcid.org/0000-0001-5351-9242</orcidid><orcidid>https://orcid.org/0000-0002-2843-7736</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1051-0443
ispartof Journal of vascular and interventional radiology, 2023-05, Vol.34 (5), p.871-878.e3
issn 1051-0443
1535-7732
language eng
recordid cdi_proquest_miscellaneous_2766430219
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Arteries
Humans
Light
Materials Testing
Silicones
Surface Properties
Swine
Tensile Strength
title Mechanical Properties of a 3 Dimensional–Printed Transparent Flexible Resin Used for Vascular Model Simulation Compared with Those of Porcine Arteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A12%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Properties%20of%20a%203%20Dimensional%E2%80%93Printed%20Transparent%20Flexible%20Resin%20Used%20for%20Vascular%20Model%20Simulation%20Compared%20with%20Those%20of%20Porcine%20Arteries&rft.jtitle=Journal%20of%20vascular%20and%20interventional%20radiology&rft.au=Morita,%20Ryo&rft.date=2023-05&rft.volume=34&rft.issue=5&rft.spage=871&rft.epage=878.e3&rft.pages=871-878.e3&rft.issn=1051-0443&rft.eissn=1535-7732&rft_id=info:doi/10.1016/j.jvir.2023.01.008&rft_dat=%3Cproquest_cross%3E2766430219%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766430219&rft_id=info:pmid/36646207&rft_els_id=S105104432300012X&rfr_iscdi=true