Solvent‐in‐Gas System for Promoted Photocatalytic Ammonia Synthesis on Porous Framework Materials

Photocatalytic nitrogen reduction reaction (PNRR) is emerging as a sustainable ammonia synthesis approach to meet global carbon neutrality. Porous framework materials with well‐designed structures have great opportunities in PNRR; however, they suffer from unsatisfactory activity in the conventional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-04, Vol.35 (14), p.e2211730-n/a
Hauptverfasser: Liu, Sisi, Wang, Mengfan, Ji, Haoqing, Zhang, Lifang, Ni, Jiajie, Li, Najun, Qian, Tao, Yan, Chenglin, Lu, Jianmei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 14
container_start_page e2211730
container_title Advanced materials (Weinheim)
container_volume 35
creator Liu, Sisi
Wang, Mengfan
Ji, Haoqing
Zhang, Lifang
Ni, Jiajie
Li, Najun
Qian, Tao
Yan, Chenglin
Lu, Jianmei
description Photocatalytic nitrogen reduction reaction (PNRR) is emerging as a sustainable ammonia synthesis approach to meet global carbon neutrality. Porous framework materials with well‐designed structures have great opportunities in PNRR; however, they suffer from unsatisfactory activity in the conventional gas‐in‐solvent system (GIS), owing to the hindrance of nitrogen utilization and strong competing hydrogen evolution caused by overwhelming solvent. In this study, porous framework materials are combined with a novel “solvent‐in‐gas” system, which can bring their superiority into full play. This system enables photocatalysts to directly operate in a gas‐dominated environment with a limited proton source uniformly suspended in it, achieving the accumulation of high‐concentrated nitrogen within porous framework while efficiently restricting the solvent‐photocatalyst contact. An over eightfold increase in ammonia production rate (1820.7 µmol g−1 h−1) compared with the conventional GIS and an apparent quantum efficiency as high as ≈0.5% at 400 nm are achieved. This system‐level strategy further finds applicability in photocatalytic CO2 reduction, featuring it as a staple for photosynthetic methodology. Conventional gas‐in‐solvent reaction systems for photocatalytic nitrogen reduction suffer from unsatisfactory activity, since the overwhelming protic solvent severely hinders the nitrogen transfer and causes strong competing hydrogen evolution. In this work, a novel “solvent‐in‐gas” system, which enables direct operation of photocatalyst under a nitrogen gas‐dominated environment with limited proton source, is designed to fundamentally solve the above problem.
doi_str_mv 10.1002/adma.202211730
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2766430074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795928009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3730-d054db2edf8670e7918a41f81f77cb1ae7fd435c59103281460c62af93c3c88c3</originalsourceid><addsrcrecordid>eNqFkc1OGzEUha2qqKS02y6RpW7YTLj-Gc94GfFXJBCRQtcjx3NHDIzH1HZA2fUR-ox9kjpKAKkbNvduvnt07jmEfGMwZQD82LTOTDlwzlgl4AOZsJKzQoIuP5IJaFEWWsl6n3yO8R4AtAL1iewLpaSSAiYEF354wjH9_f2nH_O4MJEu1jGho50PdB688wlbOr_zyVuTzLBOvaUz5_zYm4yO6Q5jH6kf6dwHv4r0PBiHzz480GuTMPRmiF_IXpcXft3tA_Lz_Oz25EdxdXNxeTK7KqzI7osWStkuObZdrSrASrPaSNbVrKsqu2QGq66VorSlZiB4zaQCq7jptLDC1rUVB-Roq_sY_K8VxtS4PlocBjNittbwSm3ehkpm9Pt_6L1fhTG7y5QuNa9zWpmabikbfIwBu-Yx9M6EdcOg2RTQbApoXgvIB4c72dXSYfuKvySeAb0FnvsB1-_INbPT69mb-D8BjZPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795928009</pqid></control><display><type>article</type><title>Solvent‐in‐Gas System for Promoted Photocatalytic Ammonia Synthesis on Porous Framework Materials</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Sisi ; Wang, Mengfan ; Ji, Haoqing ; Zhang, Lifang ; Ni, Jiajie ; Li, Najun ; Qian, Tao ; Yan, Chenglin ; Lu, Jianmei</creator><creatorcontrib>Liu, Sisi ; Wang, Mengfan ; Ji, Haoqing ; Zhang, Lifang ; Ni, Jiajie ; Li, Najun ; Qian, Tao ; Yan, Chenglin ; Lu, Jianmei</creatorcontrib><description>Photocatalytic nitrogen reduction reaction (PNRR) is emerging as a sustainable ammonia synthesis approach to meet global carbon neutrality. Porous framework materials with well‐designed structures have great opportunities in PNRR; however, they suffer from unsatisfactory activity in the conventional gas‐in‐solvent system (GIS), owing to the hindrance of nitrogen utilization and strong competing hydrogen evolution caused by overwhelming solvent. In this study, porous framework materials are combined with a novel “solvent‐in‐gas” system, which can bring their superiority into full play. This system enables photocatalysts to directly operate in a gas‐dominated environment with a limited proton source uniformly suspended in it, achieving the accumulation of high‐concentrated nitrogen within porous framework while efficiently restricting the solvent‐photocatalyst contact. An over eightfold increase in ammonia production rate (1820.7 µmol g−1 h−1) compared with the conventional GIS and an apparent quantum efficiency as high as ≈0.5% at 400 nm are achieved. This system‐level strategy further finds applicability in photocatalytic CO2 reduction, featuring it as a staple for photosynthetic methodology. Conventional gas‐in‐solvent reaction systems for photocatalytic nitrogen reduction suffer from unsatisfactory activity, since the overwhelming protic solvent severely hinders the nitrogen transfer and causes strong competing hydrogen evolution. In this work, a novel “solvent‐in‐gas” system, which enables direct operation of photocatalyst under a nitrogen gas‐dominated environment with limited proton source, is designed to fundamentally solve the above problem.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202211730</identifier><identifier>PMID: 36646430</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Ammonia ; ammonia synthesis ; carbon dioxide reduction ; Chemical reduction ; Chemical synthesis ; Hydrogen evolution ; Materials science ; Nitrogen ; Photocatalysis ; Photocatalysts ; porous framework materials ; Porous materials ; Quantum efficiency ; Solvents ; solvent‐in‐gas systems</subject><ispartof>Advanced materials (Weinheim), 2023-04, Vol.35 (14), p.e2211730-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3730-d054db2edf8670e7918a41f81f77cb1ae7fd435c59103281460c62af93c3c88c3</citedby><cites>FETCH-LOGICAL-c3730-d054db2edf8670e7918a41f81f77cb1ae7fd435c59103281460c62af93c3c88c3</cites><orcidid>0000-0002-4014-2244 ; 0000-0003-3370-6395 ; 0000-0003-4467-9441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202211730$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202211730$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36646430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Sisi</creatorcontrib><creatorcontrib>Wang, Mengfan</creatorcontrib><creatorcontrib>Ji, Haoqing</creatorcontrib><creatorcontrib>Zhang, Lifang</creatorcontrib><creatorcontrib>Ni, Jiajie</creatorcontrib><creatorcontrib>Li, Najun</creatorcontrib><creatorcontrib>Qian, Tao</creatorcontrib><creatorcontrib>Yan, Chenglin</creatorcontrib><creatorcontrib>Lu, Jianmei</creatorcontrib><title>Solvent‐in‐Gas System for Promoted Photocatalytic Ammonia Synthesis on Porous Framework Materials</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Photocatalytic nitrogen reduction reaction (PNRR) is emerging as a sustainable ammonia synthesis approach to meet global carbon neutrality. Porous framework materials with well‐designed structures have great opportunities in PNRR; however, they suffer from unsatisfactory activity in the conventional gas‐in‐solvent system (GIS), owing to the hindrance of nitrogen utilization and strong competing hydrogen evolution caused by overwhelming solvent. In this study, porous framework materials are combined with a novel “solvent‐in‐gas” system, which can bring their superiority into full play. This system enables photocatalysts to directly operate in a gas‐dominated environment with a limited proton source uniformly suspended in it, achieving the accumulation of high‐concentrated nitrogen within porous framework while efficiently restricting the solvent‐photocatalyst contact. An over eightfold increase in ammonia production rate (1820.7 µmol g−1 h−1) compared with the conventional GIS and an apparent quantum efficiency as high as ≈0.5% at 400 nm are achieved. This system‐level strategy further finds applicability in photocatalytic CO2 reduction, featuring it as a staple for photosynthetic methodology. Conventional gas‐in‐solvent reaction systems for photocatalytic nitrogen reduction suffer from unsatisfactory activity, since the overwhelming protic solvent severely hinders the nitrogen transfer and causes strong competing hydrogen evolution. In this work, a novel “solvent‐in‐gas” system, which enables direct operation of photocatalyst under a nitrogen gas‐dominated environment with limited proton source, is designed to fundamentally solve the above problem.</description><subject>Ammonia</subject><subject>ammonia synthesis</subject><subject>carbon dioxide reduction</subject><subject>Chemical reduction</subject><subject>Chemical synthesis</subject><subject>Hydrogen evolution</subject><subject>Materials science</subject><subject>Nitrogen</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>porous framework materials</subject><subject>Porous materials</subject><subject>Quantum efficiency</subject><subject>Solvents</subject><subject>solvent‐in‐gas systems</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkc1OGzEUha2qqKS02y6RpW7YTLj-Gc94GfFXJBCRQtcjx3NHDIzH1HZA2fUR-ox9kjpKAKkbNvduvnt07jmEfGMwZQD82LTOTDlwzlgl4AOZsJKzQoIuP5IJaFEWWsl6n3yO8R4AtAL1iewLpaSSAiYEF354wjH9_f2nH_O4MJEu1jGho50PdB688wlbOr_zyVuTzLBOvaUz5_zYm4yO6Q5jH6kf6dwHv4r0PBiHzz480GuTMPRmiF_IXpcXft3tA_Lz_Oz25EdxdXNxeTK7KqzI7osWStkuObZdrSrASrPaSNbVrKsqu2QGq66VorSlZiB4zaQCq7jptLDC1rUVB-Roq_sY_K8VxtS4PlocBjNittbwSm3ehkpm9Pt_6L1fhTG7y5QuNa9zWpmabikbfIwBu-Yx9M6EdcOg2RTQbApoXgvIB4c72dXSYfuKvySeAb0FnvsB1-_INbPT69mb-D8BjZPo</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Liu, Sisi</creator><creator>Wang, Mengfan</creator><creator>Ji, Haoqing</creator><creator>Zhang, Lifang</creator><creator>Ni, Jiajie</creator><creator>Li, Najun</creator><creator>Qian, Tao</creator><creator>Yan, Chenglin</creator><creator>Lu, Jianmei</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4014-2244</orcidid><orcidid>https://orcid.org/0000-0003-3370-6395</orcidid><orcidid>https://orcid.org/0000-0003-4467-9441</orcidid></search><sort><creationdate>20230401</creationdate><title>Solvent‐in‐Gas System for Promoted Photocatalytic Ammonia Synthesis on Porous Framework Materials</title><author>Liu, Sisi ; Wang, Mengfan ; Ji, Haoqing ; Zhang, Lifang ; Ni, Jiajie ; Li, Najun ; Qian, Tao ; Yan, Chenglin ; Lu, Jianmei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3730-d054db2edf8670e7918a41f81f77cb1ae7fd435c59103281460c62af93c3c88c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ammonia</topic><topic>ammonia synthesis</topic><topic>carbon dioxide reduction</topic><topic>Chemical reduction</topic><topic>Chemical synthesis</topic><topic>Hydrogen evolution</topic><topic>Materials science</topic><topic>Nitrogen</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>porous framework materials</topic><topic>Porous materials</topic><topic>Quantum efficiency</topic><topic>Solvents</topic><topic>solvent‐in‐gas systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Sisi</creatorcontrib><creatorcontrib>Wang, Mengfan</creatorcontrib><creatorcontrib>Ji, Haoqing</creatorcontrib><creatorcontrib>Zhang, Lifang</creatorcontrib><creatorcontrib>Ni, Jiajie</creatorcontrib><creatorcontrib>Li, Najun</creatorcontrib><creatorcontrib>Qian, Tao</creatorcontrib><creatorcontrib>Yan, Chenglin</creatorcontrib><creatorcontrib>Lu, Jianmei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Sisi</au><au>Wang, Mengfan</au><au>Ji, Haoqing</au><au>Zhang, Lifang</au><au>Ni, Jiajie</au><au>Li, Najun</au><au>Qian, Tao</au><au>Yan, Chenglin</au><au>Lu, Jianmei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvent‐in‐Gas System for Promoted Photocatalytic Ammonia Synthesis on Porous Framework Materials</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>35</volume><issue>14</issue><spage>e2211730</spage><epage>n/a</epage><pages>e2211730-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Photocatalytic nitrogen reduction reaction (PNRR) is emerging as a sustainable ammonia synthesis approach to meet global carbon neutrality. Porous framework materials with well‐designed structures have great opportunities in PNRR; however, they suffer from unsatisfactory activity in the conventional gas‐in‐solvent system (GIS), owing to the hindrance of nitrogen utilization and strong competing hydrogen evolution caused by overwhelming solvent. In this study, porous framework materials are combined with a novel “solvent‐in‐gas” system, which can bring their superiority into full play. This system enables photocatalysts to directly operate in a gas‐dominated environment with a limited proton source uniformly suspended in it, achieving the accumulation of high‐concentrated nitrogen within porous framework while efficiently restricting the solvent‐photocatalyst contact. An over eightfold increase in ammonia production rate (1820.7 µmol g−1 h−1) compared with the conventional GIS and an apparent quantum efficiency as high as ≈0.5% at 400 nm are achieved. This system‐level strategy further finds applicability in photocatalytic CO2 reduction, featuring it as a staple for photosynthetic methodology. Conventional gas‐in‐solvent reaction systems for photocatalytic nitrogen reduction suffer from unsatisfactory activity, since the overwhelming protic solvent severely hinders the nitrogen transfer and causes strong competing hydrogen evolution. In this work, a novel “solvent‐in‐gas” system, which enables direct operation of photocatalyst under a nitrogen gas‐dominated environment with limited proton source, is designed to fundamentally solve the above problem.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36646430</pmid><doi>10.1002/adma.202211730</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4014-2244</orcidid><orcidid>https://orcid.org/0000-0003-3370-6395</orcidid><orcidid>https://orcid.org/0000-0003-4467-9441</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-04, Vol.35 (14), p.e2211730-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2766430074
source Wiley Online Library Journals Frontfile Complete
subjects Ammonia
ammonia synthesis
carbon dioxide reduction
Chemical reduction
Chemical synthesis
Hydrogen evolution
Materials science
Nitrogen
Photocatalysis
Photocatalysts
porous framework materials
Porous materials
Quantum efficiency
Solvents
solvent‐in‐gas systems
title Solvent‐in‐Gas System for Promoted Photocatalytic Ammonia Synthesis on Porous Framework Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T04%3A28%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvent%E2%80%90in%E2%80%90Gas%20System%20for%20Promoted%20Photocatalytic%20Ammonia%20Synthesis%20on%20Porous%20Framework%20Materials&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Liu,%20Sisi&rft.date=2023-04-01&rft.volume=35&rft.issue=14&rft.spage=e2211730&rft.epage=n/a&rft.pages=e2211730-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202211730&rft_dat=%3Cproquest_cross%3E2795928009%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795928009&rft_id=info:pmid/36646430&rfr_iscdi=true