Recent developments in rapid thermal processing
Rapid thermal annealing (RTA) with a short dwell time at maximum temperature is used with ion implantation to form shallow junctions and polycrystalline-Si gate electrodes in complementary, metal-oxide semiconductor (CMOS) Si processing. Wafers are heated by electric lamps or steady heat sources wit...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2002-10, Vol.31 (10), p.981-987 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 987 |
---|---|
container_issue | 10 |
container_start_page | 981 |
container_title | Journal of electronic materials |
container_volume | 31 |
creator | FIORY, A. T |
description | Rapid thermal annealing (RTA) with a short dwell time at maximum temperature is used with ion implantation to form shallow junctions and polycrystalline-Si gate electrodes in complementary, metal-oxide semiconductor (CMOS) Si processing. Wafers are heated by electric lamps or steady heat sources with rapid wafer transfer. Advanced methods use "spike anneals," wherein high-temperature ramp rates are used for both heating and cooling while also minimizing the dwell time at peak temperature to nominally zero. The fast thermal cycles are required to reduce the undesirable effects of transient-enhanced diffusion and thermal deactivation of the dopants. Because junction profiles are sensitive to annealing temperature, the challenge in spike annealing is to maintain temperature uniformity across the wafer and repeatability from wafer to wafer. Multiple lamp systems use arrayed temperature sensors for individual control zones. Other methods rely on process chambers that are designed for uniform wafer heatin |
doi_str_mv | 10.1007/s11664-002-0031-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27663867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>230701741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-2d148eaf3b2dcba4c1350be3d5a143eafa6b711db24152f83ae0808e2e1bea43</originalsourceid><addsrcrecordid>eNpdkE9LAzEQxYMoWKsfwNsi6G1tJpPNZo9SrAoFQXrwFrLZWd2y_0y2gt_elBYED8MMzO-9GR5j18DvgfN8EQCUkinnIhZCWpywGWQSU9Dq_ZTNOCpIM4HZObsIYcs5ZKBhxhZv5Kifkoq-qR3GLs4hafrE27GpkumTfGfbZPSDoxCa_uOSndW2DXR17HO2WT1uls_p-vXpZfmwTh0iTKmoQGqyNZaicqWVDjDjJWGVWZAYF1aVOUBVCgmZqDVa4pprEgQlWYlzdnewjZe_dhQm0zXBUdvanoZdMCJXCrXKI3jzD9wOO9_H14zgUhdS5SpCcICcH0LwVJvRN531Pwa42cdnDvGZGJ_Zx2eKqLk9GtvgbFt727sm_AmlxILrAn8BwGNvIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204894676</pqid></control><display><type>article</type><title>Recent developments in rapid thermal processing</title><source>Springer journals</source><creator>FIORY, A. T</creator><creatorcontrib>FIORY, A. T</creatorcontrib><description>Rapid thermal annealing (RTA) with a short dwell time at maximum temperature is used with ion implantation to form shallow junctions and polycrystalline-Si gate electrodes in complementary, metal-oxide semiconductor (CMOS) Si processing. Wafers are heated by electric lamps or steady heat sources with rapid wafer transfer. Advanced methods use "spike anneals," wherein high-temperature ramp rates are used for both heating and cooling while also minimizing the dwell time at peak temperature to nominally zero. The fast thermal cycles are required to reduce the undesirable effects of transient-enhanced diffusion and thermal deactivation of the dopants. Because junction profiles are sensitive to annealing temperature, the challenge in spike annealing is to maintain temperature uniformity across the wafer and repeatability from wafer to wafer. Multiple lamp systems use arrayed temperature sensors for individual control zones. Other methods rely on process chambers that are designed for uniform wafer heatin</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-002-0031-9</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>New York, NY: Institute of Electrical and Electronics Engineers</publisher><subject>Applied sciences ; Electronics ; Exact sciences and technology ; Microelectronic fabrication (materials and surfaces technology) ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>Journal of electronic materials, 2002-10, Vol.31 (10), p.981-987</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright Minerals, Metals & Materials Society Oct 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-2d148eaf3b2dcba4c1350be3d5a143eafa6b711db24152f83ae0808e2e1bea43</citedby><cites>FETCH-LOGICAL-c331t-2d148eaf3b2dcba4c1350be3d5a143eafa6b711db24152f83ae0808e2e1bea43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14439089$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>FIORY, A. T</creatorcontrib><title>Recent developments in rapid thermal processing</title><title>Journal of electronic materials</title><description>Rapid thermal annealing (RTA) with a short dwell time at maximum temperature is used with ion implantation to form shallow junctions and polycrystalline-Si gate electrodes in complementary, metal-oxide semiconductor (CMOS) Si processing. Wafers are heated by electric lamps or steady heat sources with rapid wafer transfer. Advanced methods use "spike anneals," wherein high-temperature ramp rates are used for both heating and cooling while also minimizing the dwell time at peak temperature to nominally zero. The fast thermal cycles are required to reduce the undesirable effects of transient-enhanced diffusion and thermal deactivation of the dopants. Because junction profiles are sensitive to annealing temperature, the challenge in spike annealing is to maintain temperature uniformity across the wafer and repeatability from wafer to wafer. Multiple lamp systems use arrayed temperature sensors for individual control zones. Other methods rely on process chambers that are designed for uniform wafer heatin</description><subject>Applied sciences</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkE9LAzEQxYMoWKsfwNsi6G1tJpPNZo9SrAoFQXrwFrLZWd2y_0y2gt_elBYED8MMzO-9GR5j18DvgfN8EQCUkinnIhZCWpywGWQSU9Dq_ZTNOCpIM4HZObsIYcs5ZKBhxhZv5Kifkoq-qR3GLs4hafrE27GpkumTfGfbZPSDoxCa_uOSndW2DXR17HO2WT1uls_p-vXpZfmwTh0iTKmoQGqyNZaicqWVDjDjJWGVWZAYF1aVOUBVCgmZqDVa4pprEgQlWYlzdnewjZe_dhQm0zXBUdvanoZdMCJXCrXKI3jzD9wOO9_H14zgUhdS5SpCcICcH0LwVJvRN531Pwa42cdnDvGZGJ_Zx2eKqLk9GtvgbFt727sm_AmlxILrAn8BwGNvIw</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>FIORY, A. T</creator><general>Institute of Electrical and Electronics Engineers</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20021001</creationdate><title>Recent developments in rapid thermal processing</title><author>FIORY, A. T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-2d148eaf3b2dcba4c1350be3d5a143eafa6b711db24152f83ae0808e2e1bea43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FIORY, A. T</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Ceramic Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FIORY, A. T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent developments in rapid thermal processing</atitle><jtitle>Journal of electronic materials</jtitle><date>2002-10-01</date><risdate>2002</risdate><volume>31</volume><issue>10</issue><spage>981</spage><epage>987</epage><pages>981-987</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>Rapid thermal annealing (RTA) with a short dwell time at maximum temperature is used with ion implantation to form shallow junctions and polycrystalline-Si gate electrodes in complementary, metal-oxide semiconductor (CMOS) Si processing. Wafers are heated by electric lamps or steady heat sources with rapid wafer transfer. Advanced methods use "spike anneals," wherein high-temperature ramp rates are used for both heating and cooling while also minimizing the dwell time at peak temperature to nominally zero. The fast thermal cycles are required to reduce the undesirable effects of transient-enhanced diffusion and thermal deactivation of the dopants. Because junction profiles are sensitive to annealing temperature, the challenge in spike annealing is to maintain temperature uniformity across the wafer and repeatability from wafer to wafer. Multiple lamp systems use arrayed temperature sensors for individual control zones. Other methods rely on process chambers that are designed for uniform wafer heatin</abstract><cop>New York, NY</cop><pub>Institute of Electrical and Electronics Engineers</pub><doi>10.1007/s11664-002-0031-9</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2002-10, Vol.31 (10), p.981-987 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_miscellaneous_27663867 |
source | Springer journals |
subjects | Applied sciences Electronics Exact sciences and technology Microelectronic fabrication (materials and surfaces technology) Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices |
title | Recent developments in rapid thermal processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T19%3A54%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20developments%20in%20rapid%20thermal%20processing&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=FIORY,%20A.%20T&rft.date=2002-10-01&rft.volume=31&rft.issue=10&rft.spage=981&rft.epage=987&rft.pages=981-987&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-002-0031-9&rft_dat=%3Cproquest_cross%3E230701741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204894676&rft_id=info:pmid/&rfr_iscdi=true |