Fluorinated Poly(aryl piperidinium) Membranes for Anion Exchange Membrane Fuel Cells

Anion‐exchange‐membrane fuel cells (AEMFCs) are a cost‐effective alternative to proton‐exchange‐membrane fuel cells (PEMFCs). The development of high‐performance and durable AEMFCs requires highly conductive and robust anion‐exchange membranes (AEMs). However, AEMs generally exhibit a trade‐off betw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-06, Vol.35 (26), p.e2210432-n/a
Hauptverfasser: Wu, Xingyu, Chen, Nanjun, Hu, Chuan, Klok, Harm‐Anton, Lee, Young Moo, Hu, Xile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 26
container_start_page e2210432
container_title Advanced materials (Weinheim)
container_volume 35
creator Wu, Xingyu
Chen, Nanjun
Hu, Chuan
Klok, Harm‐Anton
Lee, Young Moo
Hu, Xile
description Anion‐exchange‐membrane fuel cells (AEMFCs) are a cost‐effective alternative to proton‐exchange‐membrane fuel cells (PEMFCs). The development of high‐performance and durable AEMFCs requires highly conductive and robust anion‐exchange membranes (AEMs). However, AEMs generally exhibit a trade‐off between conductivity and dimensional stability. Here, a fluorination strategy to create a phase‐separated morphological structure in poly(aryl piperidinium) AEMs is reported. The highly hydrophobic perfluoroalkyl side chains augment phase separation to construct interconnected hydrophilic channels for anion transport. As a result, these fluorinated PAP (FPAP) AEMs simultaneously possess high conductivity (>150 mS cm−1 at 80 °C) and high dimensional stability (swelling ratio 80 MPa and elongation at break >40%) and chemical stability (>2000 h in 3 m KOH at 80 °C). AEMFCs with a non‐precious Co–Mn spinel cathode using the present FPAP AEMs achieve an outstanding peak power density of 1.31 W cm−2. The AEMs remain stable over 500 h of fuel cell operation at a constant current density of 0.2 A cm−2. Side‐chain fluorination leads to poly(aryl piperidinium) membranes with both high conductivity and high dimensional stability. These membranes are stable over 500 h in anion‐exchange‐membrane fuel cells (AEMFCs) with a PGM‐free (Co–Mn spinel) cathode.
doi_str_mv 10.1002/adma.202210432
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2766065241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766065241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4132-17163bbf3fc28ba195ce36c2e4cdc5bc87319e1ef4897853701176eb46f797b73</originalsourceid><addsrcrecordid>eNqFkDtPwzAURi0EoqWwMqJILGVI8St2PFalBaRWMJTZSpwbMMqj2I2g_x5XLUViYbqDj7_73YPQJcEjgjG9zYo6G1FMKcGc0SPUJwklMccqOUZ9rFgSK8HTHjrz_h1jrAQWp6jHhOBUCdlHy1nVtc422RqK6LmtNsPMbapoZVfgbGEb29U30QLq3GUN-KhsXTRubNtE0y_zljWvcHiMZh1U0QSqyp-jkzKrPFzs5wC9zKbLyUM8f7p_nIznseGE0ZhIIliel6w0NM0zohIDTBgK3BQmyU0qGVFAoOSpkmnCJCZECsi5KKWSuWQDNNzlrlz70YFf69p6ExqEOm3nNZUi3JvQsG2Arv-g723nmtBO05RhnAiW8kCNdpRxrfcOSr1ytg5GNMF661tvfeuD7_Dhah_b5TUUB_xHcADUDvi0FWz-idPju8X4N_wbXqOKvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830056384</pqid></control><display><type>article</type><title>Fluorinated Poly(aryl piperidinium) Membranes for Anion Exchange Membrane Fuel Cells</title><source>Wiley Online Library All Journals</source><creator>Wu, Xingyu ; Chen, Nanjun ; Hu, Chuan ; Klok, Harm‐Anton ; Lee, Young Moo ; Hu, Xile</creator><creatorcontrib>Wu, Xingyu ; Chen, Nanjun ; Hu, Chuan ; Klok, Harm‐Anton ; Lee, Young Moo ; Hu, Xile</creatorcontrib><description>Anion‐exchange‐membrane fuel cells (AEMFCs) are a cost‐effective alternative to proton‐exchange‐membrane fuel cells (PEMFCs). The development of high‐performance and durable AEMFCs requires highly conductive and robust anion‐exchange membranes (AEMs). However, AEMs generally exhibit a trade‐off between conductivity and dimensional stability. Here, a fluorination strategy to create a phase‐separated morphological structure in poly(aryl piperidinium) AEMs is reported. The highly hydrophobic perfluoroalkyl side chains augment phase separation to construct interconnected hydrophilic channels for anion transport. As a result, these fluorinated PAP (FPAP) AEMs simultaneously possess high conductivity (&gt;150 mS cm−1 at 80 °C) and high dimensional stability (swelling ratio &lt;20% at 80 °C), excellent mechanical properties (tensile strength &gt;80 MPa and elongation at break &gt;40%) and chemical stability (&gt;2000 h in 3 m KOH at 80 °C). AEMFCs with a non‐precious Co–Mn spinel cathode using the present FPAP AEMs achieve an outstanding peak power density of 1.31 W cm−2. The AEMs remain stable over 500 h of fuel cell operation at a constant current density of 0.2 A cm−2. Side‐chain fluorination leads to poly(aryl piperidinium) membranes with both high conductivity and high dimensional stability. These membranes are stable over 500 h in anion‐exchange‐membrane fuel cells (AEMFCs) with a PGM‐free (Co–Mn spinel) cathode.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202210432</identifier><identifier>PMID: 36642967</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anion exchanging ; anion‐exchange membranes ; anion‐exchange‐membrane fuel cells ; Aromatic compounds ; Dimensional stability ; Elongation ; Fluorination ; Fuel cells ; Materials science ; Mechanical properties ; Membranes ; microphase separation ; Phase separation ; poly(aryl piperidinium) ; Swelling ratio ; Tensile strength</subject><ispartof>Advanced materials (Weinheim), 2023-06, Vol.35 (26), p.e2210432-n/a</ispartof><rights>2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4132-17163bbf3fc28ba195ce36c2e4cdc5bc87319e1ef4897853701176eb46f797b73</citedby><cites>FETCH-LOGICAL-c4132-17163bbf3fc28ba195ce36c2e4cdc5bc87319e1ef4897853701176eb46f797b73</cites><orcidid>0000-0001-8335-1196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202210432$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202210432$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36642967$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Xingyu</creatorcontrib><creatorcontrib>Chen, Nanjun</creatorcontrib><creatorcontrib>Hu, Chuan</creatorcontrib><creatorcontrib>Klok, Harm‐Anton</creatorcontrib><creatorcontrib>Lee, Young Moo</creatorcontrib><creatorcontrib>Hu, Xile</creatorcontrib><title>Fluorinated Poly(aryl piperidinium) Membranes for Anion Exchange Membrane Fuel Cells</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Anion‐exchange‐membrane fuel cells (AEMFCs) are a cost‐effective alternative to proton‐exchange‐membrane fuel cells (PEMFCs). The development of high‐performance and durable AEMFCs requires highly conductive and robust anion‐exchange membranes (AEMs). However, AEMs generally exhibit a trade‐off between conductivity and dimensional stability. Here, a fluorination strategy to create a phase‐separated morphological structure in poly(aryl piperidinium) AEMs is reported. The highly hydrophobic perfluoroalkyl side chains augment phase separation to construct interconnected hydrophilic channels for anion transport. As a result, these fluorinated PAP (FPAP) AEMs simultaneously possess high conductivity (&gt;150 mS cm−1 at 80 °C) and high dimensional stability (swelling ratio &lt;20% at 80 °C), excellent mechanical properties (tensile strength &gt;80 MPa and elongation at break &gt;40%) and chemical stability (&gt;2000 h in 3 m KOH at 80 °C). AEMFCs with a non‐precious Co–Mn spinel cathode using the present FPAP AEMs achieve an outstanding peak power density of 1.31 W cm−2. The AEMs remain stable over 500 h of fuel cell operation at a constant current density of 0.2 A cm−2. Side‐chain fluorination leads to poly(aryl piperidinium) membranes with both high conductivity and high dimensional stability. These membranes are stable over 500 h in anion‐exchange‐membrane fuel cells (AEMFCs) with a PGM‐free (Co–Mn spinel) cathode.</description><subject>Anion exchanging</subject><subject>anion‐exchange membranes</subject><subject>anion‐exchange‐membrane fuel cells</subject><subject>Aromatic compounds</subject><subject>Dimensional stability</subject><subject>Elongation</subject><subject>Fluorination</subject><subject>Fuel cells</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Membranes</subject><subject>microphase separation</subject><subject>Phase separation</subject><subject>poly(aryl piperidinium)</subject><subject>Swelling ratio</subject><subject>Tensile strength</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkDtPwzAURi0EoqWwMqJILGVI8St2PFalBaRWMJTZSpwbMMqj2I2g_x5XLUViYbqDj7_73YPQJcEjgjG9zYo6G1FMKcGc0SPUJwklMccqOUZ9rFgSK8HTHjrz_h1jrAQWp6jHhOBUCdlHy1nVtc422RqK6LmtNsPMbapoZVfgbGEb29U30QLq3GUN-KhsXTRubNtE0y_zljWvcHiMZh1U0QSqyp-jkzKrPFzs5wC9zKbLyUM8f7p_nIznseGE0ZhIIliel6w0NM0zohIDTBgK3BQmyU0qGVFAoOSpkmnCJCZECsi5KKWSuWQDNNzlrlz70YFf69p6ExqEOm3nNZUi3JvQsG2Arv-g723nmtBO05RhnAiW8kCNdpRxrfcOSr1ytg5GNMF661tvfeuD7_Dhah_b5TUUB_xHcADUDvi0FWz-idPju8X4N_wbXqOKvg</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Wu, Xingyu</creator><creator>Chen, Nanjun</creator><creator>Hu, Chuan</creator><creator>Klok, Harm‐Anton</creator><creator>Lee, Young Moo</creator><creator>Hu, Xile</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8335-1196</orcidid></search><sort><creationdate>20230601</creationdate><title>Fluorinated Poly(aryl piperidinium) Membranes for Anion Exchange Membrane Fuel Cells</title><author>Wu, Xingyu ; Chen, Nanjun ; Hu, Chuan ; Klok, Harm‐Anton ; Lee, Young Moo ; Hu, Xile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4132-17163bbf3fc28ba195ce36c2e4cdc5bc87319e1ef4897853701176eb46f797b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anion exchanging</topic><topic>anion‐exchange membranes</topic><topic>anion‐exchange‐membrane fuel cells</topic><topic>Aromatic compounds</topic><topic>Dimensional stability</topic><topic>Elongation</topic><topic>Fluorination</topic><topic>Fuel cells</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Membranes</topic><topic>microphase separation</topic><topic>Phase separation</topic><topic>poly(aryl piperidinium)</topic><topic>Swelling ratio</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xingyu</creatorcontrib><creatorcontrib>Chen, Nanjun</creatorcontrib><creatorcontrib>Hu, Chuan</creatorcontrib><creatorcontrib>Klok, Harm‐Anton</creatorcontrib><creatorcontrib>Lee, Young Moo</creatorcontrib><creatorcontrib>Hu, Xile</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xingyu</au><au>Chen, Nanjun</au><au>Hu, Chuan</au><au>Klok, Harm‐Anton</au><au>Lee, Young Moo</au><au>Hu, Xile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorinated Poly(aryl piperidinium) Membranes for Anion Exchange Membrane Fuel Cells</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>35</volume><issue>26</issue><spage>e2210432</spage><epage>n/a</epage><pages>e2210432-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Anion‐exchange‐membrane fuel cells (AEMFCs) are a cost‐effective alternative to proton‐exchange‐membrane fuel cells (PEMFCs). The development of high‐performance and durable AEMFCs requires highly conductive and robust anion‐exchange membranes (AEMs). However, AEMs generally exhibit a trade‐off between conductivity and dimensional stability. Here, a fluorination strategy to create a phase‐separated morphological structure in poly(aryl piperidinium) AEMs is reported. The highly hydrophobic perfluoroalkyl side chains augment phase separation to construct interconnected hydrophilic channels for anion transport. As a result, these fluorinated PAP (FPAP) AEMs simultaneously possess high conductivity (&gt;150 mS cm−1 at 80 °C) and high dimensional stability (swelling ratio &lt;20% at 80 °C), excellent mechanical properties (tensile strength &gt;80 MPa and elongation at break &gt;40%) and chemical stability (&gt;2000 h in 3 m KOH at 80 °C). AEMFCs with a non‐precious Co–Mn spinel cathode using the present FPAP AEMs achieve an outstanding peak power density of 1.31 W cm−2. The AEMs remain stable over 500 h of fuel cell operation at a constant current density of 0.2 A cm−2. Side‐chain fluorination leads to poly(aryl piperidinium) membranes with both high conductivity and high dimensional stability. These membranes are stable over 500 h in anion‐exchange‐membrane fuel cells (AEMFCs) with a PGM‐free (Co–Mn spinel) cathode.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36642967</pmid><doi>10.1002/adma.202210432</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8335-1196</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-06, Vol.35 (26), p.e2210432-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2766065241
source Wiley Online Library All Journals
subjects Anion exchanging
anion‐exchange membranes
anion‐exchange‐membrane fuel cells
Aromatic compounds
Dimensional stability
Elongation
Fluorination
Fuel cells
Materials science
Mechanical properties
Membranes
microphase separation
Phase separation
poly(aryl piperidinium)
Swelling ratio
Tensile strength
title Fluorinated Poly(aryl piperidinium) Membranes for Anion Exchange Membrane Fuel Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A45%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorinated%20Poly(aryl%20piperidinium)%20Membranes%20for%20Anion%20Exchange%20Membrane%20Fuel%20Cells&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wu,%20Xingyu&rft.date=2023-06-01&rft.volume=35&rft.issue=26&rft.spage=e2210432&rft.epage=n/a&rft.pages=e2210432-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202210432&rft_dat=%3Cproquest_cross%3E2766065241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2830056384&rft_id=info:pmid/36642967&rfr_iscdi=true