Fluorinated Poly(aryl piperidinium) Membranes for Anion Exchange Membrane Fuel Cells
Anion‐exchange‐membrane fuel cells (AEMFCs) are a cost‐effective alternative to proton‐exchange‐membrane fuel cells (PEMFCs). The development of high‐performance and durable AEMFCs requires highly conductive and robust anion‐exchange membranes (AEMs). However, AEMs generally exhibit a trade‐off betw...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2023-06, Vol.35 (26), p.e2210432-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 26 |
container_start_page | e2210432 |
container_title | Advanced materials (Weinheim) |
container_volume | 35 |
creator | Wu, Xingyu Chen, Nanjun Hu, Chuan Klok, Harm‐Anton Lee, Young Moo Hu, Xile |
description | Anion‐exchange‐membrane fuel cells (AEMFCs) are a cost‐effective alternative to proton‐exchange‐membrane fuel cells (PEMFCs). The development of high‐performance and durable AEMFCs requires highly conductive and robust anion‐exchange membranes (AEMs). However, AEMs generally exhibit a trade‐off between conductivity and dimensional stability. Here, a fluorination strategy to create a phase‐separated morphological structure in poly(aryl piperidinium) AEMs is reported. The highly hydrophobic perfluoroalkyl side chains augment phase separation to construct interconnected hydrophilic channels for anion transport. As a result, these fluorinated PAP (FPAP) AEMs simultaneously possess high conductivity (>150 mS cm−1 at 80 °C) and high dimensional stability (swelling ratio 80 MPa and elongation at break >40%) and chemical stability (>2000 h in 3 m KOH at 80 °C). AEMFCs with a non‐precious Co–Mn spinel cathode using the present FPAP AEMs achieve an outstanding peak power density of 1.31 W cm−2. The AEMs remain stable over 500 h of fuel cell operation at a constant current density of 0.2 A cm−2.
Side‐chain fluorination leads to poly(aryl piperidinium) membranes with both high conductivity and high dimensional stability. These membranes are stable over 500 h in anion‐exchange‐membrane fuel cells (AEMFCs) with a PGM‐free (Co–Mn spinel) cathode. |
doi_str_mv | 10.1002/adma.202210432 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2766065241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766065241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4132-17163bbf3fc28ba195ce36c2e4cdc5bc87319e1ef4897853701176eb46f797b73</originalsourceid><addsrcrecordid>eNqFkDtPwzAURi0EoqWwMqJILGVI8St2PFalBaRWMJTZSpwbMMqj2I2g_x5XLUViYbqDj7_73YPQJcEjgjG9zYo6G1FMKcGc0SPUJwklMccqOUZ9rFgSK8HTHjrz_h1jrAQWp6jHhOBUCdlHy1nVtc422RqK6LmtNsPMbapoZVfgbGEb29U30QLq3GUN-KhsXTRubNtE0y_zljWvcHiMZh1U0QSqyp-jkzKrPFzs5wC9zKbLyUM8f7p_nIznseGE0ZhIIliel6w0NM0zohIDTBgK3BQmyU0qGVFAoOSpkmnCJCZECsi5KKWSuWQDNNzlrlz70YFf69p6ExqEOm3nNZUi3JvQsG2Arv-g723nmtBO05RhnAiW8kCNdpRxrfcOSr1ytg5GNMF661tvfeuD7_Dhah_b5TUUB_xHcADUDvi0FWz-idPju8X4N_wbXqOKvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830056384</pqid></control><display><type>article</type><title>Fluorinated Poly(aryl piperidinium) Membranes for Anion Exchange Membrane Fuel Cells</title><source>Wiley Online Library All Journals</source><creator>Wu, Xingyu ; Chen, Nanjun ; Hu, Chuan ; Klok, Harm‐Anton ; Lee, Young Moo ; Hu, Xile</creator><creatorcontrib>Wu, Xingyu ; Chen, Nanjun ; Hu, Chuan ; Klok, Harm‐Anton ; Lee, Young Moo ; Hu, Xile</creatorcontrib><description>Anion‐exchange‐membrane fuel cells (AEMFCs) are a cost‐effective alternative to proton‐exchange‐membrane fuel cells (PEMFCs). The development of high‐performance and durable AEMFCs requires highly conductive and robust anion‐exchange membranes (AEMs). However, AEMs generally exhibit a trade‐off between conductivity and dimensional stability. Here, a fluorination strategy to create a phase‐separated morphological structure in poly(aryl piperidinium) AEMs is reported. The highly hydrophobic perfluoroalkyl side chains augment phase separation to construct interconnected hydrophilic channels for anion transport. As a result, these fluorinated PAP (FPAP) AEMs simultaneously possess high conductivity (>150 mS cm−1 at 80 °C) and high dimensional stability (swelling ratio <20% at 80 °C), excellent mechanical properties (tensile strength >80 MPa and elongation at break >40%) and chemical stability (>2000 h in 3 m KOH at 80 °C). AEMFCs with a non‐precious Co–Mn spinel cathode using the present FPAP AEMs achieve an outstanding peak power density of 1.31 W cm−2. The AEMs remain stable over 500 h of fuel cell operation at a constant current density of 0.2 A cm−2.
Side‐chain fluorination leads to poly(aryl piperidinium) membranes with both high conductivity and high dimensional stability. These membranes are stable over 500 h in anion‐exchange‐membrane fuel cells (AEMFCs) with a PGM‐free (Co–Mn spinel) cathode.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202210432</identifier><identifier>PMID: 36642967</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anion exchanging ; anion‐exchange membranes ; anion‐exchange‐membrane fuel cells ; Aromatic compounds ; Dimensional stability ; Elongation ; Fluorination ; Fuel cells ; Materials science ; Mechanical properties ; Membranes ; microphase separation ; Phase separation ; poly(aryl piperidinium) ; Swelling ratio ; Tensile strength</subject><ispartof>Advanced materials (Weinheim), 2023-06, Vol.35 (26), p.e2210432-n/a</ispartof><rights>2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4132-17163bbf3fc28ba195ce36c2e4cdc5bc87319e1ef4897853701176eb46f797b73</citedby><cites>FETCH-LOGICAL-c4132-17163bbf3fc28ba195ce36c2e4cdc5bc87319e1ef4897853701176eb46f797b73</cites><orcidid>0000-0001-8335-1196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202210432$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202210432$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36642967$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Xingyu</creatorcontrib><creatorcontrib>Chen, Nanjun</creatorcontrib><creatorcontrib>Hu, Chuan</creatorcontrib><creatorcontrib>Klok, Harm‐Anton</creatorcontrib><creatorcontrib>Lee, Young Moo</creatorcontrib><creatorcontrib>Hu, Xile</creatorcontrib><title>Fluorinated Poly(aryl piperidinium) Membranes for Anion Exchange Membrane Fuel Cells</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Anion‐exchange‐membrane fuel cells (AEMFCs) are a cost‐effective alternative to proton‐exchange‐membrane fuel cells (PEMFCs). The development of high‐performance and durable AEMFCs requires highly conductive and robust anion‐exchange membranes (AEMs). However, AEMs generally exhibit a trade‐off between conductivity and dimensional stability. Here, a fluorination strategy to create a phase‐separated morphological structure in poly(aryl piperidinium) AEMs is reported. The highly hydrophobic perfluoroalkyl side chains augment phase separation to construct interconnected hydrophilic channels for anion transport. As a result, these fluorinated PAP (FPAP) AEMs simultaneously possess high conductivity (>150 mS cm−1 at 80 °C) and high dimensional stability (swelling ratio <20% at 80 °C), excellent mechanical properties (tensile strength >80 MPa and elongation at break >40%) and chemical stability (>2000 h in 3 m KOH at 80 °C). AEMFCs with a non‐precious Co–Mn spinel cathode using the present FPAP AEMs achieve an outstanding peak power density of 1.31 W cm−2. The AEMs remain stable over 500 h of fuel cell operation at a constant current density of 0.2 A cm−2.
Side‐chain fluorination leads to poly(aryl piperidinium) membranes with both high conductivity and high dimensional stability. These membranes are stable over 500 h in anion‐exchange‐membrane fuel cells (AEMFCs) with a PGM‐free (Co–Mn spinel) cathode.</description><subject>Anion exchanging</subject><subject>anion‐exchange membranes</subject><subject>anion‐exchange‐membrane fuel cells</subject><subject>Aromatic compounds</subject><subject>Dimensional stability</subject><subject>Elongation</subject><subject>Fluorination</subject><subject>Fuel cells</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Membranes</subject><subject>microphase separation</subject><subject>Phase separation</subject><subject>poly(aryl piperidinium)</subject><subject>Swelling ratio</subject><subject>Tensile strength</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkDtPwzAURi0EoqWwMqJILGVI8St2PFalBaRWMJTZSpwbMMqj2I2g_x5XLUViYbqDj7_73YPQJcEjgjG9zYo6G1FMKcGc0SPUJwklMccqOUZ9rFgSK8HTHjrz_h1jrAQWp6jHhOBUCdlHy1nVtc422RqK6LmtNsPMbapoZVfgbGEb29U30QLq3GUN-KhsXTRubNtE0y_zljWvcHiMZh1U0QSqyp-jkzKrPFzs5wC9zKbLyUM8f7p_nIznseGE0ZhIIliel6w0NM0zohIDTBgK3BQmyU0qGVFAoOSpkmnCJCZECsi5KKWSuWQDNNzlrlz70YFf69p6ExqEOm3nNZUi3JvQsG2Arv-g723nmtBO05RhnAiW8kCNdpRxrfcOSr1ytg5GNMF661tvfeuD7_Dhah_b5TUUB_xHcADUDvi0FWz-idPju8X4N_wbXqOKvg</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Wu, Xingyu</creator><creator>Chen, Nanjun</creator><creator>Hu, Chuan</creator><creator>Klok, Harm‐Anton</creator><creator>Lee, Young Moo</creator><creator>Hu, Xile</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8335-1196</orcidid></search><sort><creationdate>20230601</creationdate><title>Fluorinated Poly(aryl piperidinium) Membranes for Anion Exchange Membrane Fuel Cells</title><author>Wu, Xingyu ; Chen, Nanjun ; Hu, Chuan ; Klok, Harm‐Anton ; Lee, Young Moo ; Hu, Xile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4132-17163bbf3fc28ba195ce36c2e4cdc5bc87319e1ef4897853701176eb46f797b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anion exchanging</topic><topic>anion‐exchange membranes</topic><topic>anion‐exchange‐membrane fuel cells</topic><topic>Aromatic compounds</topic><topic>Dimensional stability</topic><topic>Elongation</topic><topic>Fluorination</topic><topic>Fuel cells</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Membranes</topic><topic>microphase separation</topic><topic>Phase separation</topic><topic>poly(aryl piperidinium)</topic><topic>Swelling ratio</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xingyu</creatorcontrib><creatorcontrib>Chen, Nanjun</creatorcontrib><creatorcontrib>Hu, Chuan</creatorcontrib><creatorcontrib>Klok, Harm‐Anton</creatorcontrib><creatorcontrib>Lee, Young Moo</creatorcontrib><creatorcontrib>Hu, Xile</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xingyu</au><au>Chen, Nanjun</au><au>Hu, Chuan</au><au>Klok, Harm‐Anton</au><au>Lee, Young Moo</au><au>Hu, Xile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorinated Poly(aryl piperidinium) Membranes for Anion Exchange Membrane Fuel Cells</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>35</volume><issue>26</issue><spage>e2210432</spage><epage>n/a</epage><pages>e2210432-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Anion‐exchange‐membrane fuel cells (AEMFCs) are a cost‐effective alternative to proton‐exchange‐membrane fuel cells (PEMFCs). The development of high‐performance and durable AEMFCs requires highly conductive and robust anion‐exchange membranes (AEMs). However, AEMs generally exhibit a trade‐off between conductivity and dimensional stability. Here, a fluorination strategy to create a phase‐separated morphological structure in poly(aryl piperidinium) AEMs is reported. The highly hydrophobic perfluoroalkyl side chains augment phase separation to construct interconnected hydrophilic channels for anion transport. As a result, these fluorinated PAP (FPAP) AEMs simultaneously possess high conductivity (>150 mS cm−1 at 80 °C) and high dimensional stability (swelling ratio <20% at 80 °C), excellent mechanical properties (tensile strength >80 MPa and elongation at break >40%) and chemical stability (>2000 h in 3 m KOH at 80 °C). AEMFCs with a non‐precious Co–Mn spinel cathode using the present FPAP AEMs achieve an outstanding peak power density of 1.31 W cm−2. The AEMs remain stable over 500 h of fuel cell operation at a constant current density of 0.2 A cm−2.
Side‐chain fluorination leads to poly(aryl piperidinium) membranes with both high conductivity and high dimensional stability. These membranes are stable over 500 h in anion‐exchange‐membrane fuel cells (AEMFCs) with a PGM‐free (Co–Mn spinel) cathode.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36642967</pmid><doi>10.1002/adma.202210432</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8335-1196</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2023-06, Vol.35 (26), p.e2210432-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2766065241 |
source | Wiley Online Library All Journals |
subjects | Anion exchanging anion‐exchange membranes anion‐exchange‐membrane fuel cells Aromatic compounds Dimensional stability Elongation Fluorination Fuel cells Materials science Mechanical properties Membranes microphase separation Phase separation poly(aryl piperidinium) Swelling ratio Tensile strength |
title | Fluorinated Poly(aryl piperidinium) Membranes for Anion Exchange Membrane Fuel Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A45%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorinated%20Poly(aryl%20piperidinium)%20Membranes%20for%20Anion%20Exchange%20Membrane%20Fuel%20Cells&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wu,%20Xingyu&rft.date=2023-06-01&rft.volume=35&rft.issue=26&rft.spage=e2210432&rft.epage=n/a&rft.pages=e2210432-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202210432&rft_dat=%3Cproquest_cross%3E2766065241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2830056384&rft_id=info:pmid/36642967&rfr_iscdi=true |