Population balance modeling of flame synthesis of titania nanoparticles

The significance of various particle formation pathways during flame synthesis of titania nanoparticles by titanium tetraisopropoxide oxidation in a premixed methane–oxygen flame is investigated by population balance modeling. An efficient moving sectional model is developed accounting for gas phase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2002-06, Vol.57 (12), p.2139-2156
Hauptverfasser: Tsantilis, S., Kammler, H.K., Pratsinis, S.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2156
container_issue 12
container_start_page 2139
container_title Chemical engineering science
container_volume 57
creator Tsantilis, S.
Kammler, H.K.
Pratsinis, S.E.
description The significance of various particle formation pathways during flame synthesis of titania nanoparticles by titanium tetraisopropoxide oxidation in a premixed methane–oxygen flame is investigated by population balance modeling. An efficient moving sectional model is developed accounting for gas phase chemical reactions, coagulation, surface growth and sintering. The model is validated by comparing it against standard sectional solutions and detailed but cumbersome literature models at certain limiting cases (i.e., only coagulation and sintering, only surface growth or only coagulation). The evolution of primary particle size distribution is monitored by rapid thermophoretic sampling and image analysis of transmission electron microscope pictures while the corresponding flame temperature is measured in the presence of particles by Fourier transform infra-red spectroscopy. Excellent agreement is obtained between model predictions and data with respect to the evolution of average primary particle diameter and geometric standard deviation without any adjustable parameters until conditions of pure agglomeration of polydisperse particles are established (here, approximately after the first 9 cm above the burner tip). By comparing detailed measured and calculated size distributions, surface reaction appears to be the dominant route for early particle growth at the conditions studied.
doi_str_mv 10.1016/S0009-2509(02)00107-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27660301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250902001070</els_id><sourcerecordid>27660301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-c07e0257f02916e50a2ed9689f944f89e29e66c9dd6b71f493044c915c656ff73</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKs_QdiLoofVSXaTNCeRolUoKKjnkGYnGtnd1GQr9N-72xY9ehpmeO_NzEfIKYUrClRcvwCAyhkHdQHsEoCCzGGPjOhEFnlZAt8no1_JITlK6bNvpaQwIrPnsFzVpvOhzRamNq3FrAkV1r59z4LLXG0azNK67T4w-TSMOt-Z1pusNW1Ymth5W2M6JgfO1AlPdnVM3u7vXqcP-fxp9ji9nee2lLTLLUgExqUDpqhADoZhpcREOVWWbqKQKRTCqqoSC0ldqQooS6sot4IL52QxJufb3GUMXytMnW58slj3l2NYJc2kEFAA7YV8K7QxpBTR6WX0jYlrTUEP2PQGmx6YaGB6g01D7zvbLTDJmtrFHolPf-ZCcsn4kH-z1WH_7bfHqJP12OOrfETb6Sr4fzb9AL9XgNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27660301</pqid></control><display><type>article</type><title>Population balance modeling of flame synthesis of titania nanoparticles</title><source>Access via ScienceDirect (Elsevier)</source><creator>Tsantilis, S. ; Kammler, H.K. ; Pratsinis, S.E.</creator><creatorcontrib>Tsantilis, S. ; Kammler, H.K. ; Pratsinis, S.E.</creatorcontrib><description>The significance of various particle formation pathways during flame synthesis of titania nanoparticles by titanium tetraisopropoxide oxidation in a premixed methane–oxygen flame is investigated by population balance modeling. An efficient moving sectional model is developed accounting for gas phase chemical reactions, coagulation, surface growth and sintering. The model is validated by comparing it against standard sectional solutions and detailed but cumbersome literature models at certain limiting cases (i.e., only coagulation and sintering, only surface growth or only coagulation). The evolution of primary particle size distribution is monitored by rapid thermophoretic sampling and image analysis of transmission electron microscope pictures while the corresponding flame temperature is measured in the presence of particles by Fourier transform infra-red spectroscopy. Excellent agreement is obtained between model predictions and data with respect to the evolution of average primary particle diameter and geometric standard deviation without any adjustable parameters until conditions of pure agglomeration of polydisperse particles are established (here, approximately after the first 9 cm above the burner tip). By comparing detailed measured and calculated size distributions, surface reaction appears to be the dominant route for early particle growth at the conditions studied.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/S0009-2509(02)00107-0</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Chemical synthesis; combustion synthesis ; Chemistry ; Colloidal state and disperse state ; Combustion of gaseous fuels ; Combustion. Flame ; Cross-disciplinary physics: materials science; rheology ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; General and physical chemistry ; Materials science ; Materials synthesis; materials processing ; Nanoparticle ; Physics ; Population balance ; Powders ; Theoretical studies. Data and constants. Metering ; Titania</subject><ispartof>Chemical engineering science, 2002-06, Vol.57 (12), p.2139-2156</ispartof><rights>2002 Elsevier Science Ltd</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-c07e0257f02916e50a2ed9689f944f89e29e66c9dd6b71f493044c915c656ff73</citedby><cites>FETCH-LOGICAL-c471t-c07e0257f02916e50a2ed9689f944f89e29e66c9dd6b71f493044c915c656ff73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0009-2509(02)00107-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13757251$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsantilis, S.</creatorcontrib><creatorcontrib>Kammler, H.K.</creatorcontrib><creatorcontrib>Pratsinis, S.E.</creatorcontrib><title>Population balance modeling of flame synthesis of titania nanoparticles</title><title>Chemical engineering science</title><description>The significance of various particle formation pathways during flame synthesis of titania nanoparticles by titanium tetraisopropoxide oxidation in a premixed methane–oxygen flame is investigated by population balance modeling. An efficient moving sectional model is developed accounting for gas phase chemical reactions, coagulation, surface growth and sintering. The model is validated by comparing it against standard sectional solutions and detailed but cumbersome literature models at certain limiting cases (i.e., only coagulation and sintering, only surface growth or only coagulation). The evolution of primary particle size distribution is monitored by rapid thermophoretic sampling and image analysis of transmission electron microscope pictures while the corresponding flame temperature is measured in the presence of particles by Fourier transform infra-red spectroscopy. Excellent agreement is obtained between model predictions and data with respect to the evolution of average primary particle diameter and geometric standard deviation without any adjustable parameters until conditions of pure agglomeration of polydisperse particles are established (here, approximately after the first 9 cm above the burner tip). By comparing detailed measured and calculated size distributions, surface reaction appears to be the dominant route for early particle growth at the conditions studied.</description><subject>Applied sciences</subject><subject>Chemical synthesis; combustion synthesis</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Combustion of gaseous fuels</subject><subject>Combustion. Flame</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Materials science</subject><subject>Materials synthesis; materials processing</subject><subject>Nanoparticle</subject><subject>Physics</subject><subject>Population balance</subject><subject>Powders</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Titania</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMoWKs_QdiLoofVSXaTNCeRolUoKKjnkGYnGtnd1GQr9N-72xY9ehpmeO_NzEfIKYUrClRcvwCAyhkHdQHsEoCCzGGPjOhEFnlZAt8no1_JITlK6bNvpaQwIrPnsFzVpvOhzRamNq3FrAkV1r59z4LLXG0azNK67T4w-TSMOt-Z1pusNW1Ymth5W2M6JgfO1AlPdnVM3u7vXqcP-fxp9ji9nee2lLTLLUgExqUDpqhADoZhpcREOVWWbqKQKRTCqqoSC0ldqQooS6sot4IL52QxJufb3GUMXytMnW58slj3l2NYJc2kEFAA7YV8K7QxpBTR6WX0jYlrTUEP2PQGmx6YaGB6g01D7zvbLTDJmtrFHolPf-ZCcsn4kH-z1WH_7bfHqJP12OOrfETb6Sr4fzb9AL9XgNs</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Tsantilis, S.</creator><creator>Kammler, H.K.</creator><creator>Pratsinis, S.E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20020601</creationdate><title>Population balance modeling of flame synthesis of titania nanoparticles</title><author>Tsantilis, S. ; Kammler, H.K. ; Pratsinis, S.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-c07e0257f02916e50a2ed9689f944f89e29e66c9dd6b71f493044c915c656ff73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Chemical synthesis; combustion synthesis</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Combustion of gaseous fuels</topic><topic>Combustion. Flame</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Materials science</topic><topic>Materials synthesis; materials processing</topic><topic>Nanoparticle</topic><topic>Physics</topic><topic>Population balance</topic><topic>Powders</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Titania</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsantilis, S.</creatorcontrib><creatorcontrib>Kammler, H.K.</creatorcontrib><creatorcontrib>Pratsinis, S.E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsantilis, S.</au><au>Kammler, H.K.</au><au>Pratsinis, S.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Population balance modeling of flame synthesis of titania nanoparticles</atitle><jtitle>Chemical engineering science</jtitle><date>2002-06-01</date><risdate>2002</risdate><volume>57</volume><issue>12</issue><spage>2139</spage><epage>2156</epage><pages>2139-2156</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>The significance of various particle formation pathways during flame synthesis of titania nanoparticles by titanium tetraisopropoxide oxidation in a premixed methane–oxygen flame is investigated by population balance modeling. An efficient moving sectional model is developed accounting for gas phase chemical reactions, coagulation, surface growth and sintering. The model is validated by comparing it against standard sectional solutions and detailed but cumbersome literature models at certain limiting cases (i.e., only coagulation and sintering, only surface growth or only coagulation). The evolution of primary particle size distribution is monitored by rapid thermophoretic sampling and image analysis of transmission electron microscope pictures while the corresponding flame temperature is measured in the presence of particles by Fourier transform infra-red spectroscopy. Excellent agreement is obtained between model predictions and data with respect to the evolution of average primary particle diameter and geometric standard deviation without any adjustable parameters until conditions of pure agglomeration of polydisperse particles are established (here, approximately after the first 9 cm above the burner tip). By comparing detailed measured and calculated size distributions, surface reaction appears to be the dominant route for early particle growth at the conditions studied.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0009-2509(02)00107-0</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2002-06, Vol.57 (12), p.2139-2156
issn 0009-2509
1873-4405
language eng
recordid cdi_proquest_miscellaneous_27660301
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Chemical synthesis
combustion synthesis
Chemistry
Colloidal state and disperse state
Combustion of gaseous fuels
Combustion. Flame
Cross-disciplinary physics: materials science
rheology
Energy
Energy. Thermal use of fuels
Exact sciences and technology
General and physical chemistry
Materials science
Materials synthesis
materials processing
Nanoparticle
Physics
Population balance
Powders
Theoretical studies. Data and constants. Metering
Titania
title Population balance modeling of flame synthesis of titania nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A49%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Population%20balance%20modeling%20of%20flame%20synthesis%20of%20titania%20nanoparticles&rft.jtitle=Chemical%20engineering%20science&rft.au=Tsantilis,%20S.&rft.date=2002-06-01&rft.volume=57&rft.issue=12&rft.spage=2139&rft.epage=2156&rft.pages=2139-2156&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/S0009-2509(02)00107-0&rft_dat=%3Cproquest_cross%3E27660301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27660301&rft_id=info:pmid/&rft_els_id=S0009250902001070&rfr_iscdi=true