Predicting trends in rate parameters for self-diffusion on FCC metal surfaces
The hopping self diffusion coefficient of an adatom on the (1 0 0), (1 1 0) and (1 1 1) surfaces of nine FCC metals have been investigated using Monte Carlo variational transition state theory and the Lennard-Jones (L-J) interactions. The metals that have been studied are Ag, Al, Au, Cu, Ir, Ni, Pd,...
Gespeichert in:
Veröffentlicht in: | Surface science 2002-08, Vol.515 (1), p.21-35 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | 1 |
container_start_page | 21 |
container_title | Surface science |
container_volume | 515 |
creator | Agrawal, Paras M Rice, Betsy M Thompson, Donald L |
description | The hopping self diffusion coefficient of an adatom on the (1
0
0), (1
1
0) and (1
1
1) surfaces of nine FCC metals have been investigated using Monte Carlo variational transition state theory and the Lennard-Jones (L-J) interactions. The metals that have been studied are Ag, Al, Au, Cu, Ir, Ni, Pd, Pt and Rh. The potential parameters for the L-J interactions have been determined from the known experimental values of cohesive energies and lattice constants. The ratio,
R, of the cohesive energy to the activation energy for diffusive hopping on the (1
1
1) and (1
0
0) surfaces are found to be 30 and 6, respectively. For diffusive hopping on the (1
1
0) surface,
R depends on the direction of diffusion:
R is 5 and 2.8 along the
[1
1
0]
and [0
0
1] directions, respectively. The pre-exponential factor,
D
0, for these metals is found to vary within a factor of three from the corresponding average value, (
D
0)
av for a given surface and diffusion channel. Also, the pre-exponential factors corresponding to diffusion on the (1
1
1), (1
0
0), (1
1
0)
[1
1
0]
and (1
1
0)[0
0
1] surfaces are found to satisfy an empirical expression in terms of
R, lattice constant, and the distance between the two nearest binding sites. The results on the activation energies and pre-exponential factors are compared with other experimental and theoretical data. |
doi_str_mv | 10.1016/S0039-6028(02)01916-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27659096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039602802019167</els_id><sourcerecordid>27659096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-37b1f33a93252f60578f0bc122a57adf964448bc32f851ef14918588fc4f60293</originalsourceid><addsrcrecordid>eNqFkE1LxDAQQIMouK7-BCEXRQ_VJG3a5CRSXBVWFNRzyKYTiXTbNdMK_nuzu6JHh4G5vPl6hBxzdsEZLy-fGct1VjKhzpg4Z1zzMqt2yISrSmeikmqXTH6RfXKA-M5SFFpOyMNThCa4IXRvdIjQNUhDR6MdgK5stEsYICL1faQIrc-a4P2Ioe9oylld0wTYluIYvXWAh2TP2xbh6KdOyevs5qW-y-aPt_f19TxzhSqHLK8W3Oe51bmQwpdMVsqzheNCWFnZxuuyKAq1cLnwSnLwvNBcSaW8KxItdD4lp9u5q9h_jICDWQZ00La2g35EI6pSaqbLBMot6GKPGMGbVQxLG78MZ2Ytz2zkmbUZw4TZyDNV6jv5WWDR2dZH27mAf815uktrnrirLQfp288A0aAL0LnkNIIbTNOHfzZ9A10-glM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27659096</pqid></control><display><type>article</type><title>Predicting trends in rate parameters for self-diffusion on FCC metal surfaces</title><source>Elsevier ScienceDirect Journals</source><creator>Agrawal, Paras M ; Rice, Betsy M ; Thompson, Donald L</creator><creatorcontrib>Agrawal, Paras M ; Rice, Betsy M ; Thompson, Donald L</creatorcontrib><description>The hopping self diffusion coefficient of an adatom on the (1
0
0), (1
1
0) and (1
1
1) surfaces of nine FCC metals have been investigated using Monte Carlo variational transition state theory and the Lennard-Jones (L-J) interactions. The metals that have been studied are Ag, Al, Au, Cu, Ir, Ni, Pd, Pt and Rh. The potential parameters for the L-J interactions have been determined from the known experimental values of cohesive energies and lattice constants. The ratio,
R, of the cohesive energy to the activation energy for diffusive hopping on the (1
1
1) and (1
0
0) surfaces are found to be 30 and 6, respectively. For diffusive hopping on the (1
1
0) surface,
R depends on the direction of diffusion:
R is 5 and 2.8 along the
[1
1
0]
and [0
0
1] directions, respectively. The pre-exponential factor,
D
0, for these metals is found to vary within a factor of three from the corresponding average value, (
D
0)
av for a given surface and diffusion channel. Also, the pre-exponential factors corresponding to diffusion on the (1
1
1), (1
0
0), (1
1
0)
[1
1
0]
and (1
1
0)[0
0
1] surfaces are found to satisfy an empirical expression in terms of
R, lattice constant, and the distance between the two nearest binding sites. The results on the activation energies and pre-exponential factors are compared with other experimental and theoretical data.</description><identifier>ISSN: 0039-6028</identifier><identifier>EISSN: 1879-2758</identifier><identifier>DOI: 10.1016/S0039-6028(02)01916-7</identifier><identifier>CODEN: SUSCAS</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Aluminum ; Computer simulations ; Condensed matter: structure, mechanical and thermal properties ; Copper ; Diffusion; interface formation ; Exact sciences and technology ; Gold ; Iridium ; Monte Carlo simulations ; Nickel ; Palladium ; Physics ; Platinum ; Rhodium ; Silver ; Solid surfaces and solid-solid interfaces ; Surface diffusion ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Surface science, 2002-08, Vol.515 (1), p.21-35</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-37b1f33a93252f60578f0bc122a57adf964448bc32f851ef14918588fc4f60293</citedby><cites>FETCH-LOGICAL-c486t-37b1f33a93252f60578f0bc122a57adf964448bc32f851ef14918588fc4f60293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0039602802019167$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13851991$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Agrawal, Paras M</creatorcontrib><creatorcontrib>Rice, Betsy M</creatorcontrib><creatorcontrib>Thompson, Donald L</creatorcontrib><title>Predicting trends in rate parameters for self-diffusion on FCC metal surfaces</title><title>Surface science</title><description>The hopping self diffusion coefficient of an adatom on the (1
0
0), (1
1
0) and (1
1
1) surfaces of nine FCC metals have been investigated using Monte Carlo variational transition state theory and the Lennard-Jones (L-J) interactions. The metals that have been studied are Ag, Al, Au, Cu, Ir, Ni, Pd, Pt and Rh. The potential parameters for the L-J interactions have been determined from the known experimental values of cohesive energies and lattice constants. The ratio,
R, of the cohesive energy to the activation energy for diffusive hopping on the (1
1
1) and (1
0
0) surfaces are found to be 30 and 6, respectively. For diffusive hopping on the (1
1
0) surface,
R depends on the direction of diffusion:
R is 5 and 2.8 along the
[1
1
0]
and [0
0
1] directions, respectively. The pre-exponential factor,
D
0, for these metals is found to vary within a factor of three from the corresponding average value, (
D
0)
av for a given surface and diffusion channel. Also, the pre-exponential factors corresponding to diffusion on the (1
1
1), (1
0
0), (1
1
0)
[1
1
0]
and (1
1
0)[0
0
1] surfaces are found to satisfy an empirical expression in terms of
R, lattice constant, and the distance between the two nearest binding sites. The results on the activation energies and pre-exponential factors are compared with other experimental and theoretical data.</description><subject>Aluminum</subject><subject>Computer simulations</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Copper</subject><subject>Diffusion; interface formation</subject><subject>Exact sciences and technology</subject><subject>Gold</subject><subject>Iridium</subject><subject>Monte Carlo simulations</subject><subject>Nickel</subject><subject>Palladium</subject><subject>Physics</subject><subject>Platinum</subject><subject>Rhodium</subject><subject>Silver</subject><subject>Solid surfaces and solid-solid interfaces</subject><subject>Surface diffusion</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>0039-6028</issn><issn>1879-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQQIMouK7-BCEXRQ_VJG3a5CRSXBVWFNRzyKYTiXTbNdMK_nuzu6JHh4G5vPl6hBxzdsEZLy-fGct1VjKhzpg4Z1zzMqt2yISrSmeikmqXTH6RfXKA-M5SFFpOyMNThCa4IXRvdIjQNUhDR6MdgK5stEsYICL1faQIrc-a4P2Ioe9oylld0wTYluIYvXWAh2TP2xbh6KdOyevs5qW-y-aPt_f19TxzhSqHLK8W3Oe51bmQwpdMVsqzheNCWFnZxuuyKAq1cLnwSnLwvNBcSaW8KxItdD4lp9u5q9h_jICDWQZ00La2g35EI6pSaqbLBMot6GKPGMGbVQxLG78MZ2Ytz2zkmbUZw4TZyDNV6jv5WWDR2dZH27mAf815uktrnrirLQfp288A0aAL0LnkNIIbTNOHfzZ9A10-glM</recordid><startdate>200208</startdate><enddate>200208</enddate><creator>Agrawal, Paras M</creator><creator>Rice, Betsy M</creator><creator>Thompson, Donald L</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>200208</creationdate><title>Predicting trends in rate parameters for self-diffusion on FCC metal surfaces</title><author>Agrawal, Paras M ; Rice, Betsy M ; Thompson, Donald L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-37b1f33a93252f60578f0bc122a57adf964448bc32f851ef14918588fc4f60293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Aluminum</topic><topic>Computer simulations</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Copper</topic><topic>Diffusion; interface formation</topic><topic>Exact sciences and technology</topic><topic>Gold</topic><topic>Iridium</topic><topic>Monte Carlo simulations</topic><topic>Nickel</topic><topic>Palladium</topic><topic>Physics</topic><topic>Platinum</topic><topic>Rhodium</topic><topic>Silver</topic><topic>Solid surfaces and solid-solid interfaces</topic><topic>Surface diffusion</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agrawal, Paras M</creatorcontrib><creatorcontrib>Rice, Betsy M</creatorcontrib><creatorcontrib>Thompson, Donald L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agrawal, Paras M</au><au>Rice, Betsy M</au><au>Thompson, Donald L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting trends in rate parameters for self-diffusion on FCC metal surfaces</atitle><jtitle>Surface science</jtitle><date>2002-08</date><risdate>2002</risdate><volume>515</volume><issue>1</issue><spage>21</spage><epage>35</epage><pages>21-35</pages><issn>0039-6028</issn><eissn>1879-2758</eissn><coden>SUSCAS</coden><abstract>The hopping self diffusion coefficient of an adatom on the (1
0
0), (1
1
0) and (1
1
1) surfaces of nine FCC metals have been investigated using Monte Carlo variational transition state theory and the Lennard-Jones (L-J) interactions. The metals that have been studied are Ag, Al, Au, Cu, Ir, Ni, Pd, Pt and Rh. The potential parameters for the L-J interactions have been determined from the known experimental values of cohesive energies and lattice constants. The ratio,
R, of the cohesive energy to the activation energy for diffusive hopping on the (1
1
1) and (1
0
0) surfaces are found to be 30 and 6, respectively. For diffusive hopping on the (1
1
0) surface,
R depends on the direction of diffusion:
R is 5 and 2.8 along the
[1
1
0]
and [0
0
1] directions, respectively. The pre-exponential factor,
D
0, for these metals is found to vary within a factor of three from the corresponding average value, (
D
0)
av for a given surface and diffusion channel. Also, the pre-exponential factors corresponding to diffusion on the (1
1
1), (1
0
0), (1
1
0)
[1
1
0]
and (1
1
0)[0
0
1] surfaces are found to satisfy an empirical expression in terms of
R, lattice constant, and the distance between the two nearest binding sites. The results on the activation energies and pre-exponential factors are compared with other experimental and theoretical data.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/S0039-6028(02)01916-7</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-6028 |
ispartof | Surface science, 2002-08, Vol.515 (1), p.21-35 |
issn | 0039-6028 1879-2758 |
language | eng |
recordid | cdi_proquest_miscellaneous_27659096 |
source | Elsevier ScienceDirect Journals |
subjects | Aluminum Computer simulations Condensed matter: structure, mechanical and thermal properties Copper Diffusion interface formation Exact sciences and technology Gold Iridium Monte Carlo simulations Nickel Palladium Physics Platinum Rhodium Silver Solid surfaces and solid-solid interfaces Surface diffusion Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) |
title | Predicting trends in rate parameters for self-diffusion on FCC metal surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A37%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20trends%20in%20rate%20parameters%20for%20self-diffusion%20on%20FCC%20metal%20surfaces&rft.jtitle=Surface%20science&rft.au=Agrawal,%20Paras%20M&rft.date=2002-08&rft.volume=515&rft.issue=1&rft.spage=21&rft.epage=35&rft.pages=21-35&rft.issn=0039-6028&rft.eissn=1879-2758&rft.coden=SUSCAS&rft_id=info:doi/10.1016/S0039-6028(02)01916-7&rft_dat=%3Cproquest_cross%3E27659096%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27659096&rft_id=info:pmid/&rft_els_id=S0039602802019167&rfr_iscdi=true |