Super-tough and self-healable all-cellulose-based electrolyte for fast degradable quasi-solid-state supercapacitor
Recyclable and degradable supercapacitors have promising applications for a sustainable energy storage industry. Herein, we prepare a dual-physical crosslinking (DP) carboxymethyl cellulose (CMC) hydrogel with high-toughness, healability, and electric conductivity by integrating abundant ions into t...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2023-03, Vol.304, p.120502-120502, Article 120502 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 120502 |
---|---|
container_issue | |
container_start_page | 120502 |
container_title | Carbohydrate polymers |
container_volume | 304 |
creator | Lin, Xiaobo Wang, Mengying Zhao, Junchai Wu, Xiangfeng Xie, Jixing Yang, Jinhui |
description | Recyclable and degradable supercapacitors have promising applications for a sustainable energy storage industry. Herein, we prepare a dual-physical crosslinking (DP) carboxymethyl cellulose (CMC) hydrogel with high-toughness, healability, and electric conductivity by integrating abundant ions into the matrix. The prepared hydrogel displays a maximum compressive fracture stress of 4.42 MPa, fast healing in five seconds, and full degradation within eight days. Moreover, the fabricated supercapacitor shows high specific capacitance (309 F g−1) and volumetric capacitance (2.60 F cm−3). The supercapacitor achieves a healing efficiency of 93.9 % after five cuttings, and exhibits a cycling stability of 84.6 % capacitance retention after 1000 cycles. These merits ensure that the all-cellulose-based supercapacitor can operate in case of sudden collision and deformation, which contribute to reducing the environmental hazards from supercapacitor's preparation to its abandonment.
A dual-physical crosslinking strategy for the fabrication of super-tough, self-healable, and fast degradable CMC hydrogel as quasi-solid-state electrolyte with outstanding electrochemical properties. [Display omitted]
•Fully degradable all-cellulose electrolytes are fabricated as supercapacitors.•The supercapacitors combine superior mechanical and electrochemical performance.•Dual-physical networks provide its strength, self healing, and ions conduction.•A route avoids petrochemical polymers, chemical crosslinking agents, and UV light. |
doi_str_mv | 10.1016/j.carbpol.2022.120502 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2765778600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861722014072</els_id><sourcerecordid>2765778600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-efe42cfdaabe401da738c855bd67c08c0d91cb0fc2c1893a8c035b7cc0be217c3</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi1ERZfCTwDlyMWL7Xw4OSFUQUGqxAE4W-PxpPXKu049CVL_fbPsliu-jGQ977yaR4h3Wm210t3H3Rah-CmnrVHGbLVRrTIvxEb3dpC6bpqXYqN008i-0_ZSvGbeqfV1Wr0Sl3XXNVoPZiPKz2WiIue83N1XcAgVUxrlPUECn6iClCRSSkvKTNIDU6goEc4lp8eZqjGXagSeq0B3BcLfzMMCHCXnFIPkGVaKjx0IE2Ccc3kjLkZITG_P80r8_vrl1_U3efvj5vv151uJZmhnSSM1BscA4KlROoCte-zb1ofOoupRhUGjVyMa1P1Qw_pTt94iKk9GW6yvxIfT3qnkh4V4dvvIx2PgQHlhZ2zXWtt3Sq1oe0KxZOZCo5tK3EN5dFq5o263c2fd7qjbnXSvuffnisXvKfxLPftdgU8ngNZD_0QqjjHSASnEslp0Icf_VDwBAeSWpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765778600</pqid></control><display><type>article</type><title>Super-tough and self-healable all-cellulose-based electrolyte for fast degradable quasi-solid-state supercapacitor</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lin, Xiaobo ; Wang, Mengying ; Zhao, Junchai ; Wu, Xiangfeng ; Xie, Jixing ; Yang, Jinhui</creator><creatorcontrib>Lin, Xiaobo ; Wang, Mengying ; Zhao, Junchai ; Wu, Xiangfeng ; Xie, Jixing ; Yang, Jinhui</creatorcontrib><description>Recyclable and degradable supercapacitors have promising applications for a sustainable energy storage industry. Herein, we prepare a dual-physical crosslinking (DP) carboxymethyl cellulose (CMC) hydrogel with high-toughness, healability, and electric conductivity by integrating abundant ions into the matrix. The prepared hydrogel displays a maximum compressive fracture stress of 4.42 MPa, fast healing in five seconds, and full degradation within eight days. Moreover, the fabricated supercapacitor shows high specific capacitance (309 F g−1) and volumetric capacitance (2.60 F cm−3). The supercapacitor achieves a healing efficiency of 93.9 % after five cuttings, and exhibits a cycling stability of 84.6 % capacitance retention after 1000 cycles. These merits ensure that the all-cellulose-based supercapacitor can operate in case of sudden collision and deformation, which contribute to reducing the environmental hazards from supercapacitor's preparation to its abandonment.
A dual-physical crosslinking strategy for the fabrication of super-tough, self-healable, and fast degradable CMC hydrogel as quasi-solid-state electrolyte with outstanding electrochemical properties. [Display omitted]
•Fully degradable all-cellulose electrolytes are fabricated as supercapacitors.•The supercapacitors combine superior mechanical and electrochemical performance.•Dual-physical networks provide its strength, self healing, and ions conduction.•A route avoids petrochemical polymers, chemical crosslinking agents, and UV light.</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2022.120502</identifier><identifier>PMID: 36641192</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Carboxymethyl cellulose ; Carboxymethylcellulose Sodium ; Cellulose ; Degradable hydrogels ; Electric Capacitance ; Electrolytes ; Hydrogels ; Physical crosslinking ; Supercapacitors ; Tough hydrogels</subject><ispartof>Carbohydrate polymers, 2023-03, Vol.304, p.120502-120502, Article 120502</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-efe42cfdaabe401da738c855bd67c08c0d91cb0fc2c1893a8c035b7cc0be217c3</citedby><cites>FETCH-LOGICAL-c295t-efe42cfdaabe401da738c855bd67c08c0d91cb0fc2c1893a8c035b7cc0be217c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbpol.2022.120502$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36641192$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Xiaobo</creatorcontrib><creatorcontrib>Wang, Mengying</creatorcontrib><creatorcontrib>Zhao, Junchai</creatorcontrib><creatorcontrib>Wu, Xiangfeng</creatorcontrib><creatorcontrib>Xie, Jixing</creatorcontrib><creatorcontrib>Yang, Jinhui</creatorcontrib><title>Super-tough and self-healable all-cellulose-based electrolyte for fast degradable quasi-solid-state supercapacitor</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>Recyclable and degradable supercapacitors have promising applications for a sustainable energy storage industry. Herein, we prepare a dual-physical crosslinking (DP) carboxymethyl cellulose (CMC) hydrogel with high-toughness, healability, and electric conductivity by integrating abundant ions into the matrix. The prepared hydrogel displays a maximum compressive fracture stress of 4.42 MPa, fast healing in five seconds, and full degradation within eight days. Moreover, the fabricated supercapacitor shows high specific capacitance (309 F g−1) and volumetric capacitance (2.60 F cm−3). The supercapacitor achieves a healing efficiency of 93.9 % after five cuttings, and exhibits a cycling stability of 84.6 % capacitance retention after 1000 cycles. These merits ensure that the all-cellulose-based supercapacitor can operate in case of sudden collision and deformation, which contribute to reducing the environmental hazards from supercapacitor's preparation to its abandonment.
A dual-physical crosslinking strategy for the fabrication of super-tough, self-healable, and fast degradable CMC hydrogel as quasi-solid-state electrolyte with outstanding electrochemical properties. [Display omitted]
•Fully degradable all-cellulose electrolytes are fabricated as supercapacitors.•The supercapacitors combine superior mechanical and electrochemical performance.•Dual-physical networks provide its strength, self healing, and ions conduction.•A route avoids petrochemical polymers, chemical crosslinking agents, and UV light.</description><subject>Carboxymethyl cellulose</subject><subject>Carboxymethylcellulose Sodium</subject><subject>Cellulose</subject><subject>Degradable hydrogels</subject><subject>Electric Capacitance</subject><subject>Electrolytes</subject><subject>Hydrogels</subject><subject>Physical crosslinking</subject><subject>Supercapacitors</subject><subject>Tough hydrogels</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1v1DAQhi1ERZfCTwDlyMWL7Xw4OSFUQUGqxAE4W-PxpPXKu049CVL_fbPsliu-jGQ977yaR4h3Wm210t3H3Rah-CmnrVHGbLVRrTIvxEb3dpC6bpqXYqN008i-0_ZSvGbeqfV1Wr0Sl3XXNVoPZiPKz2WiIue83N1XcAgVUxrlPUECn6iClCRSSkvKTNIDU6goEc4lp8eZqjGXagSeq0B3BcLfzMMCHCXnFIPkGVaKjx0IE2Ccc3kjLkZITG_P80r8_vrl1_U3efvj5vv151uJZmhnSSM1BscA4KlROoCte-zb1ofOoupRhUGjVyMa1P1Qw_pTt94iKk9GW6yvxIfT3qnkh4V4dvvIx2PgQHlhZ2zXWtt3Sq1oe0KxZOZCo5tK3EN5dFq5o263c2fd7qjbnXSvuffnisXvKfxLPftdgU8ngNZD_0QqjjHSASnEslp0Icf_VDwBAeSWpw</recordid><startdate>20230315</startdate><enddate>20230315</enddate><creator>Lin, Xiaobo</creator><creator>Wang, Mengying</creator><creator>Zhao, Junchai</creator><creator>Wu, Xiangfeng</creator><creator>Xie, Jixing</creator><creator>Yang, Jinhui</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230315</creationdate><title>Super-tough and self-healable all-cellulose-based electrolyte for fast degradable quasi-solid-state supercapacitor</title><author>Lin, Xiaobo ; Wang, Mengying ; Zhao, Junchai ; Wu, Xiangfeng ; Xie, Jixing ; Yang, Jinhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-efe42cfdaabe401da738c855bd67c08c0d91cb0fc2c1893a8c035b7cc0be217c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carboxymethyl cellulose</topic><topic>Carboxymethylcellulose Sodium</topic><topic>Cellulose</topic><topic>Degradable hydrogels</topic><topic>Electric Capacitance</topic><topic>Electrolytes</topic><topic>Hydrogels</topic><topic>Physical crosslinking</topic><topic>Supercapacitors</topic><topic>Tough hydrogels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Xiaobo</creatorcontrib><creatorcontrib>Wang, Mengying</creatorcontrib><creatorcontrib>Zhao, Junchai</creatorcontrib><creatorcontrib>Wu, Xiangfeng</creatorcontrib><creatorcontrib>Xie, Jixing</creatorcontrib><creatorcontrib>Yang, Jinhui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Xiaobo</au><au>Wang, Mengying</au><au>Zhao, Junchai</au><au>Wu, Xiangfeng</au><au>Xie, Jixing</au><au>Yang, Jinhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Super-tough and self-healable all-cellulose-based electrolyte for fast degradable quasi-solid-state supercapacitor</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2023-03-15</date><risdate>2023</risdate><volume>304</volume><spage>120502</spage><epage>120502</epage><pages>120502-120502</pages><artnum>120502</artnum><issn>0144-8617</issn><eissn>1879-1344</eissn><abstract>Recyclable and degradable supercapacitors have promising applications for a sustainable energy storage industry. Herein, we prepare a dual-physical crosslinking (DP) carboxymethyl cellulose (CMC) hydrogel with high-toughness, healability, and electric conductivity by integrating abundant ions into the matrix. The prepared hydrogel displays a maximum compressive fracture stress of 4.42 MPa, fast healing in five seconds, and full degradation within eight days. Moreover, the fabricated supercapacitor shows high specific capacitance (309 F g−1) and volumetric capacitance (2.60 F cm−3). The supercapacitor achieves a healing efficiency of 93.9 % after five cuttings, and exhibits a cycling stability of 84.6 % capacitance retention after 1000 cycles. These merits ensure that the all-cellulose-based supercapacitor can operate in case of sudden collision and deformation, which contribute to reducing the environmental hazards from supercapacitor's preparation to its abandonment.
A dual-physical crosslinking strategy for the fabrication of super-tough, self-healable, and fast degradable CMC hydrogel as quasi-solid-state electrolyte with outstanding electrochemical properties. [Display omitted]
•Fully degradable all-cellulose electrolytes are fabricated as supercapacitors.•The supercapacitors combine superior mechanical and electrochemical performance.•Dual-physical networks provide its strength, self healing, and ions conduction.•A route avoids petrochemical polymers, chemical crosslinking agents, and UV light.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>36641192</pmid><doi>10.1016/j.carbpol.2022.120502</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0144-8617 |
ispartof | Carbohydrate polymers, 2023-03, Vol.304, p.120502-120502, Article 120502 |
issn | 0144-8617 1879-1344 |
language | eng |
recordid | cdi_proquest_miscellaneous_2765778600 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Carboxymethyl cellulose Carboxymethylcellulose Sodium Cellulose Degradable hydrogels Electric Capacitance Electrolytes Hydrogels Physical crosslinking Supercapacitors Tough hydrogels |
title | Super-tough and self-healable all-cellulose-based electrolyte for fast degradable quasi-solid-state supercapacitor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A34%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Super-tough%20and%20self-healable%20all-cellulose-based%20electrolyte%20for%20fast%20degradable%20quasi-solid-state%20supercapacitor&rft.jtitle=Carbohydrate%20polymers&rft.au=Lin,%20Xiaobo&rft.date=2023-03-15&rft.volume=304&rft.spage=120502&rft.epage=120502&rft.pages=120502-120502&rft.artnum=120502&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2022.120502&rft_dat=%3Cproquest_cross%3E2765778600%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2765778600&rft_id=info:pmid/36641192&rft_els_id=S0144861722014072&rfr_iscdi=true |