Elastomeric biodegradable starch/bentonite nanocomposites. Structure-thermo-mechanical correlation and degradation behavior
We developed layered silicate nanocomposite films based on corn starch (CS) and bentonite nanoclay, plasticized with glycerol. The films were elastomeric with stretchability of ca. 60–90 % and Tg = −75 to −85 °C. The nanocomposites were exfoliated if cbentonite 3 wt%. The exfoliated morphology indu...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2023-03, Vol.304, p.120514-120514, Article 120514 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 120514 |
---|---|
container_issue | |
container_start_page | 120514 |
container_title | Carbohydrate polymers |
container_volume | 304 |
creator | Romo-Uribe, A. Reyes-Mayer, A. Calixto-Rodriguez, M. Sarmiento-Bustos, E. |
description | We developed layered silicate nanocomposite films based on corn starch (CS) and bentonite nanoclay, plasticized with glycerol. The films were elastomeric with stretchability of ca. 60–90 % and Tg = −75 to −85 °C. The nanocomposites were exfoliated if cbentonite 3 wt%. The exfoliated morphology induced thermal stability as shown by TGA. Interestingly, bentonite induced a reduction of Tg while increasing the Young's modulus E and reducing the extensibility. The fracture energy was a decreasing function of cbentonite except at 2.9 wt%, where the nanocomposite exhibited maximum Young's modulus and toughness, as demonstrated by the Ashby-style plot. The nanocomposite films were biodegradable in anaerobic and aerobic conditions, and in anaerobic conditions the intercalated nanocomposite of cbentonite = 2.9 wt% exhibited slower rate of degradation. These results provide insights into the development of bio-degradable elastomeric food packaging and coatings suitable for sub-ambient conditions.
[Display omitted] |
doi_str_mv | 10.1016/j.carbpol.2022.120514 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2765778306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861722014199</els_id><sourcerecordid>2765778306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2101-ccd874441b9fd4b90633659c6d54429ac11fd19f29b34b278dc013b038a013ff3</originalsourceid><addsrcrecordid>eNqFkM2O1DAQhC0EYoeBRwDlyCVZt-04yQmh1fIjrcQBOFt2u8N4lMSD7ayE9uXJMgNX-lJqqbpK_TH2GngDHPT1sUGb3ClOjeBCNCB4C-oJ20HfDTVIpZ6yHQel6l5Dd8Ve5Hzk22jgz9mV1FoBaNixh9vJ5hJnSgErF6KnH8l66yaqcrEJD9eOlhKXUKha7BIxzqeYty031deSVixrorocKM2xngkPdglopwpjSjTZEuJS2cVXl9w_u6ODvQ8xvWTPRjtlenXRPfv-4fbbzaf67svHzzfv72oU26s1ou87pRS4YfTKDVxLqdsBtW-VEoNFgNHDMIrBSeVE13vkIB2Xvd10HOWevT3nnlL8uVIuZg4ZaZrsQnHNRnS67bpebsF71p6tmGLOiUZzSmG26ZcBbh65m6O5cDeP3M2Z-3b35lKxupn8v6u_oDfDu7OBtkfvAyWTMdCC5EMiLMbH8J-K3-sOmSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765778306</pqid></control><display><type>article</type><title>Elastomeric biodegradable starch/bentonite nanocomposites. Structure-thermo-mechanical correlation and degradation behavior</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Romo-Uribe, A. ; Reyes-Mayer, A. ; Calixto-Rodriguez, M. ; Sarmiento-Bustos, E.</creator><creatorcontrib>Romo-Uribe, A. ; Reyes-Mayer, A. ; Calixto-Rodriguez, M. ; Sarmiento-Bustos, E.</creatorcontrib><description>We developed layered silicate nanocomposite films based on corn starch (CS) and bentonite nanoclay, plasticized with glycerol. The films were elastomeric with stretchability of ca. 60–90 % and Tg = −75 to −85 °C. The nanocomposites were exfoliated if cbentonite < 2 wt%, and intercalated if cbentonite > 3 wt%. The exfoliated morphology induced thermal stability as shown by TGA. Interestingly, bentonite induced a reduction of Tg while increasing the Young's modulus E and reducing the extensibility. The fracture energy was a decreasing function of cbentonite except at 2.9 wt%, where the nanocomposite exhibited maximum Young's modulus and toughness, as demonstrated by the Ashby-style plot. The nanocomposite films were biodegradable in anaerobic and aerobic conditions, and in anaerobic conditions the intercalated nanocomposite of cbentonite = 2.9 wt% exhibited slower rate of degradation. These results provide insights into the development of bio-degradable elastomeric food packaging and coatings suitable for sub-ambient conditions.
[Display omitted]</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2022.120514</identifier><identifier>PMID: 36641161</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bentonite ; Corn starch ; Elastic Modulus ; Food Packaging - methods ; Mechanical properties ; Microstructure ; Nanoclay ; Nanocomposites ; Starch ; Tensile Strength ; Thermal properties</subject><ispartof>Carbohydrate polymers, 2023-03, Vol.304, p.120514-120514, Article 120514</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2101-ccd874441b9fd4b90633659c6d54429ac11fd19f29b34b278dc013b038a013ff3</citedby><cites>FETCH-LOGICAL-c2101-ccd874441b9fd4b90633659c6d54429ac11fd19f29b34b278dc013b038a013ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0144861722014199$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36641161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Romo-Uribe, A.</creatorcontrib><creatorcontrib>Reyes-Mayer, A.</creatorcontrib><creatorcontrib>Calixto-Rodriguez, M.</creatorcontrib><creatorcontrib>Sarmiento-Bustos, E.</creatorcontrib><title>Elastomeric biodegradable starch/bentonite nanocomposites. Structure-thermo-mechanical correlation and degradation behavior</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>We developed layered silicate nanocomposite films based on corn starch (CS) and bentonite nanoclay, plasticized with glycerol. The films were elastomeric with stretchability of ca. 60–90 % and Tg = −75 to −85 °C. The nanocomposites were exfoliated if cbentonite < 2 wt%, and intercalated if cbentonite > 3 wt%. The exfoliated morphology induced thermal stability as shown by TGA. Interestingly, bentonite induced a reduction of Tg while increasing the Young's modulus E and reducing the extensibility. The fracture energy was a decreasing function of cbentonite except at 2.9 wt%, where the nanocomposite exhibited maximum Young's modulus and toughness, as demonstrated by the Ashby-style plot. The nanocomposite films were biodegradable in anaerobic and aerobic conditions, and in anaerobic conditions the intercalated nanocomposite of cbentonite = 2.9 wt% exhibited slower rate of degradation. These results provide insights into the development of bio-degradable elastomeric food packaging and coatings suitable for sub-ambient conditions.
[Display omitted]</description><subject>Bentonite</subject><subject>Corn starch</subject><subject>Elastic Modulus</subject><subject>Food Packaging - methods</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Nanoclay</subject><subject>Nanocomposites</subject><subject>Starch</subject><subject>Tensile Strength</subject><subject>Thermal properties</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM2O1DAQhC0EYoeBRwDlyCVZt-04yQmh1fIjrcQBOFt2u8N4lMSD7ayE9uXJMgNX-lJqqbpK_TH2GngDHPT1sUGb3ClOjeBCNCB4C-oJ20HfDTVIpZ6yHQel6l5Dd8Ve5Hzk22jgz9mV1FoBaNixh9vJ5hJnSgErF6KnH8l66yaqcrEJD9eOlhKXUKha7BIxzqeYty031deSVixrorocKM2xngkPdglopwpjSjTZEuJS2cVXl9w_u6ODvQ8xvWTPRjtlenXRPfv-4fbbzaf67svHzzfv72oU26s1ou87pRS4YfTKDVxLqdsBtW-VEoNFgNHDMIrBSeVE13vkIB2Xvd10HOWevT3nnlL8uVIuZg4ZaZrsQnHNRnS67bpebsF71p6tmGLOiUZzSmG26ZcBbh65m6O5cDeP3M2Z-3b35lKxupn8v6u_oDfDu7OBtkfvAyWTMdCC5EMiLMbH8J-K3-sOmSg</recordid><startdate>20230315</startdate><enddate>20230315</enddate><creator>Romo-Uribe, A.</creator><creator>Reyes-Mayer, A.</creator><creator>Calixto-Rodriguez, M.</creator><creator>Sarmiento-Bustos, E.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230315</creationdate><title>Elastomeric biodegradable starch/bentonite nanocomposites. Structure-thermo-mechanical correlation and degradation behavior</title><author>Romo-Uribe, A. ; Reyes-Mayer, A. ; Calixto-Rodriguez, M. ; Sarmiento-Bustos, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2101-ccd874441b9fd4b90633659c6d54429ac11fd19f29b34b278dc013b038a013ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bentonite</topic><topic>Corn starch</topic><topic>Elastic Modulus</topic><topic>Food Packaging - methods</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Nanoclay</topic><topic>Nanocomposites</topic><topic>Starch</topic><topic>Tensile Strength</topic><topic>Thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romo-Uribe, A.</creatorcontrib><creatorcontrib>Reyes-Mayer, A.</creatorcontrib><creatorcontrib>Calixto-Rodriguez, M.</creatorcontrib><creatorcontrib>Sarmiento-Bustos, E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romo-Uribe, A.</au><au>Reyes-Mayer, A.</au><au>Calixto-Rodriguez, M.</au><au>Sarmiento-Bustos, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elastomeric biodegradable starch/bentonite nanocomposites. Structure-thermo-mechanical correlation and degradation behavior</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2023-03-15</date><risdate>2023</risdate><volume>304</volume><spage>120514</spage><epage>120514</epage><pages>120514-120514</pages><artnum>120514</artnum><issn>0144-8617</issn><eissn>1879-1344</eissn><abstract>We developed layered silicate nanocomposite films based on corn starch (CS) and bentonite nanoclay, plasticized with glycerol. The films were elastomeric with stretchability of ca. 60–90 % and Tg = −75 to −85 °C. The nanocomposites were exfoliated if cbentonite < 2 wt%, and intercalated if cbentonite > 3 wt%. The exfoliated morphology induced thermal stability as shown by TGA. Interestingly, bentonite induced a reduction of Tg while increasing the Young's modulus E and reducing the extensibility. The fracture energy was a decreasing function of cbentonite except at 2.9 wt%, where the nanocomposite exhibited maximum Young's modulus and toughness, as demonstrated by the Ashby-style plot. The nanocomposite films were biodegradable in anaerobic and aerobic conditions, and in anaerobic conditions the intercalated nanocomposite of cbentonite = 2.9 wt% exhibited slower rate of degradation. These results provide insights into the development of bio-degradable elastomeric food packaging and coatings suitable for sub-ambient conditions.
[Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>36641161</pmid><doi>10.1016/j.carbpol.2022.120514</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0144-8617 |
ispartof | Carbohydrate polymers, 2023-03, Vol.304, p.120514-120514, Article 120514 |
issn | 0144-8617 1879-1344 |
language | eng |
recordid | cdi_proquest_miscellaneous_2765778306 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Bentonite Corn starch Elastic Modulus Food Packaging - methods Mechanical properties Microstructure Nanoclay Nanocomposites Starch Tensile Strength Thermal properties |
title | Elastomeric biodegradable starch/bentonite nanocomposites. Structure-thermo-mechanical correlation and degradation behavior |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A58%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elastomeric%20biodegradable%20starch/bentonite%20nanocomposites.%20Structure-thermo-mechanical%20correlation%20and%20degradation%20behavior&rft.jtitle=Carbohydrate%20polymers&rft.au=Romo-Uribe,%20A.&rft.date=2023-03-15&rft.volume=304&rft.spage=120514&rft.epage=120514&rft.pages=120514-120514&rft.artnum=120514&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2022.120514&rft_dat=%3Cproquest_cross%3E2765778306%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2765778306&rft_id=info:pmid/36641161&rft_els_id=S0144861722014199&rfr_iscdi=true |