Elastomeric biodegradable starch/bentonite nanocomposites. Structure-thermo-mechanical correlation and degradation behavior

We developed layered silicate nanocomposite films based on corn starch (CS) and bentonite nanoclay, plasticized with glycerol. The films were elastomeric with stretchability of ca. 60–90 % and Tg = −75 to −85 °C. The nanocomposites were exfoliated if cbentonite  3 wt%. The exfoliated morphology indu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2023-03, Vol.304, p.120514-120514, Article 120514
Hauptverfasser: Romo-Uribe, A., Reyes-Mayer, A., Calixto-Rodriguez, M., Sarmiento-Bustos, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 120514
container_issue
container_start_page 120514
container_title Carbohydrate polymers
container_volume 304
creator Romo-Uribe, A.
Reyes-Mayer, A.
Calixto-Rodriguez, M.
Sarmiento-Bustos, E.
description We developed layered silicate nanocomposite films based on corn starch (CS) and bentonite nanoclay, plasticized with glycerol. The films were elastomeric with stretchability of ca. 60–90 % and Tg = −75 to −85 °C. The nanocomposites were exfoliated if cbentonite  3 wt%. The exfoliated morphology induced thermal stability as shown by TGA. Interestingly, bentonite induced a reduction of Tg while increasing the Young's modulus E and reducing the extensibility. The fracture energy was a decreasing function of cbentonite except at 2.9 wt%, where the nanocomposite exhibited maximum Young's modulus and toughness, as demonstrated by the Ashby-style plot. The nanocomposite films were biodegradable in anaerobic and aerobic conditions, and in anaerobic conditions the intercalated nanocomposite of cbentonite = 2.9 wt% exhibited slower rate of degradation. These results provide insights into the development of bio-degradable elastomeric food packaging and coatings suitable for sub-ambient conditions. [Display omitted]
doi_str_mv 10.1016/j.carbpol.2022.120514
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2765778306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861722014199</els_id><sourcerecordid>2765778306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2101-ccd874441b9fd4b90633659c6d54429ac11fd19f29b34b278dc013b038a013ff3</originalsourceid><addsrcrecordid>eNqFkM2O1DAQhC0EYoeBRwDlyCVZt-04yQmh1fIjrcQBOFt2u8N4lMSD7ayE9uXJMgNX-lJqqbpK_TH2GngDHPT1sUGb3ClOjeBCNCB4C-oJ20HfDTVIpZ6yHQel6l5Dd8Ve5Hzk22jgz9mV1FoBaNixh9vJ5hJnSgErF6KnH8l66yaqcrEJD9eOlhKXUKha7BIxzqeYty031deSVixrorocKM2xngkPdglopwpjSjTZEuJS2cVXl9w_u6ODvQ8xvWTPRjtlenXRPfv-4fbbzaf67svHzzfv72oU26s1ou87pRS4YfTKDVxLqdsBtW-VEoNFgNHDMIrBSeVE13vkIB2Xvd10HOWevT3nnlL8uVIuZg4ZaZrsQnHNRnS67bpebsF71p6tmGLOiUZzSmG26ZcBbh65m6O5cDeP3M2Z-3b35lKxupn8v6u_oDfDu7OBtkfvAyWTMdCC5EMiLMbH8J-K3-sOmSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765778306</pqid></control><display><type>article</type><title>Elastomeric biodegradable starch/bentonite nanocomposites. Structure-thermo-mechanical correlation and degradation behavior</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Romo-Uribe, A. ; Reyes-Mayer, A. ; Calixto-Rodriguez, M. ; Sarmiento-Bustos, E.</creator><creatorcontrib>Romo-Uribe, A. ; Reyes-Mayer, A. ; Calixto-Rodriguez, M. ; Sarmiento-Bustos, E.</creatorcontrib><description>We developed layered silicate nanocomposite films based on corn starch (CS) and bentonite nanoclay, plasticized with glycerol. The films were elastomeric with stretchability of ca. 60–90 % and Tg = −75 to −85 °C. The nanocomposites were exfoliated if cbentonite &lt; 2 wt%, and intercalated if cbentonite &gt; 3 wt%. The exfoliated morphology induced thermal stability as shown by TGA. Interestingly, bentonite induced a reduction of Tg while increasing the Young's modulus E and reducing the extensibility. The fracture energy was a decreasing function of cbentonite except at 2.9 wt%, where the nanocomposite exhibited maximum Young's modulus and toughness, as demonstrated by the Ashby-style plot. The nanocomposite films were biodegradable in anaerobic and aerobic conditions, and in anaerobic conditions the intercalated nanocomposite of cbentonite = 2.9 wt% exhibited slower rate of degradation. These results provide insights into the development of bio-degradable elastomeric food packaging and coatings suitable for sub-ambient conditions. [Display omitted]</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2022.120514</identifier><identifier>PMID: 36641161</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bentonite ; Corn starch ; Elastic Modulus ; Food Packaging - methods ; Mechanical properties ; Microstructure ; Nanoclay ; Nanocomposites ; Starch ; Tensile Strength ; Thermal properties</subject><ispartof>Carbohydrate polymers, 2023-03, Vol.304, p.120514-120514, Article 120514</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2101-ccd874441b9fd4b90633659c6d54429ac11fd19f29b34b278dc013b038a013ff3</citedby><cites>FETCH-LOGICAL-c2101-ccd874441b9fd4b90633659c6d54429ac11fd19f29b34b278dc013b038a013ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0144861722014199$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36641161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Romo-Uribe, A.</creatorcontrib><creatorcontrib>Reyes-Mayer, A.</creatorcontrib><creatorcontrib>Calixto-Rodriguez, M.</creatorcontrib><creatorcontrib>Sarmiento-Bustos, E.</creatorcontrib><title>Elastomeric biodegradable starch/bentonite nanocomposites. Structure-thermo-mechanical correlation and degradation behavior</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>We developed layered silicate nanocomposite films based on corn starch (CS) and bentonite nanoclay, plasticized with glycerol. The films were elastomeric with stretchability of ca. 60–90 % and Tg = −75 to −85 °C. The nanocomposites were exfoliated if cbentonite &lt; 2 wt%, and intercalated if cbentonite &gt; 3 wt%. The exfoliated morphology induced thermal stability as shown by TGA. Interestingly, bentonite induced a reduction of Tg while increasing the Young's modulus E and reducing the extensibility. The fracture energy was a decreasing function of cbentonite except at 2.9 wt%, where the nanocomposite exhibited maximum Young's modulus and toughness, as demonstrated by the Ashby-style plot. The nanocomposite films were biodegradable in anaerobic and aerobic conditions, and in anaerobic conditions the intercalated nanocomposite of cbentonite = 2.9 wt% exhibited slower rate of degradation. These results provide insights into the development of bio-degradable elastomeric food packaging and coatings suitable for sub-ambient conditions. [Display omitted]</description><subject>Bentonite</subject><subject>Corn starch</subject><subject>Elastic Modulus</subject><subject>Food Packaging - methods</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Nanoclay</subject><subject>Nanocomposites</subject><subject>Starch</subject><subject>Tensile Strength</subject><subject>Thermal properties</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM2O1DAQhC0EYoeBRwDlyCVZt-04yQmh1fIjrcQBOFt2u8N4lMSD7ayE9uXJMgNX-lJqqbpK_TH2GngDHPT1sUGb3ClOjeBCNCB4C-oJ20HfDTVIpZ6yHQel6l5Dd8Ve5Hzk22jgz9mV1FoBaNixh9vJ5hJnSgErF6KnH8l66yaqcrEJD9eOlhKXUKha7BIxzqeYty031deSVixrorocKM2xngkPdglopwpjSjTZEuJS2cVXl9w_u6ODvQ8xvWTPRjtlenXRPfv-4fbbzaf67svHzzfv72oU26s1ou87pRS4YfTKDVxLqdsBtW-VEoNFgNHDMIrBSeVE13vkIB2Xvd10HOWevT3nnlL8uVIuZg4ZaZrsQnHNRnS67bpebsF71p6tmGLOiUZzSmG26ZcBbh65m6O5cDeP3M2Z-3b35lKxupn8v6u_oDfDu7OBtkfvAyWTMdCC5EMiLMbH8J-K3-sOmSg</recordid><startdate>20230315</startdate><enddate>20230315</enddate><creator>Romo-Uribe, A.</creator><creator>Reyes-Mayer, A.</creator><creator>Calixto-Rodriguez, M.</creator><creator>Sarmiento-Bustos, E.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230315</creationdate><title>Elastomeric biodegradable starch/bentonite nanocomposites. Structure-thermo-mechanical correlation and degradation behavior</title><author>Romo-Uribe, A. ; Reyes-Mayer, A. ; Calixto-Rodriguez, M. ; Sarmiento-Bustos, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2101-ccd874441b9fd4b90633659c6d54429ac11fd19f29b34b278dc013b038a013ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bentonite</topic><topic>Corn starch</topic><topic>Elastic Modulus</topic><topic>Food Packaging - methods</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Nanoclay</topic><topic>Nanocomposites</topic><topic>Starch</topic><topic>Tensile Strength</topic><topic>Thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romo-Uribe, A.</creatorcontrib><creatorcontrib>Reyes-Mayer, A.</creatorcontrib><creatorcontrib>Calixto-Rodriguez, M.</creatorcontrib><creatorcontrib>Sarmiento-Bustos, E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romo-Uribe, A.</au><au>Reyes-Mayer, A.</au><au>Calixto-Rodriguez, M.</au><au>Sarmiento-Bustos, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elastomeric biodegradable starch/bentonite nanocomposites. Structure-thermo-mechanical correlation and degradation behavior</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2023-03-15</date><risdate>2023</risdate><volume>304</volume><spage>120514</spage><epage>120514</epage><pages>120514-120514</pages><artnum>120514</artnum><issn>0144-8617</issn><eissn>1879-1344</eissn><abstract>We developed layered silicate nanocomposite films based on corn starch (CS) and bentonite nanoclay, plasticized with glycerol. The films were elastomeric with stretchability of ca. 60–90 % and Tg = −75 to −85 °C. The nanocomposites were exfoliated if cbentonite &lt; 2 wt%, and intercalated if cbentonite &gt; 3 wt%. The exfoliated morphology induced thermal stability as shown by TGA. Interestingly, bentonite induced a reduction of Tg while increasing the Young's modulus E and reducing the extensibility. The fracture energy was a decreasing function of cbentonite except at 2.9 wt%, where the nanocomposite exhibited maximum Young's modulus and toughness, as demonstrated by the Ashby-style plot. The nanocomposite films were biodegradable in anaerobic and aerobic conditions, and in anaerobic conditions the intercalated nanocomposite of cbentonite = 2.9 wt% exhibited slower rate of degradation. These results provide insights into the development of bio-degradable elastomeric food packaging and coatings suitable for sub-ambient conditions. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>36641161</pmid><doi>10.1016/j.carbpol.2022.120514</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0144-8617
ispartof Carbohydrate polymers, 2023-03, Vol.304, p.120514-120514, Article 120514
issn 0144-8617
1879-1344
language eng
recordid cdi_proquest_miscellaneous_2765778306
source MEDLINE; Elsevier ScienceDirect Journals
subjects Bentonite
Corn starch
Elastic Modulus
Food Packaging - methods
Mechanical properties
Microstructure
Nanoclay
Nanocomposites
Starch
Tensile Strength
Thermal properties
title Elastomeric biodegradable starch/bentonite nanocomposites. Structure-thermo-mechanical correlation and degradation behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A58%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elastomeric%20biodegradable%20starch/bentonite%20nanocomposites.%20Structure-thermo-mechanical%20correlation%20and%20degradation%20behavior&rft.jtitle=Carbohydrate%20polymers&rft.au=Romo-Uribe,%20A.&rft.date=2023-03-15&rft.volume=304&rft.spage=120514&rft.epage=120514&rft.pages=120514-120514&rft.artnum=120514&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2022.120514&rft_dat=%3Cproquest_cross%3E2765778306%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2765778306&rft_id=info:pmid/36641161&rft_els_id=S0144861722014199&rfr_iscdi=true