Integrating Preoperative Computed Tomography and Clinical Factors for Lymph Node Metastasis Prediction in Esophageal Squamous Cell Carcinoma by Feature-Wise Attentional Graph Neural Network

This study aimed to propose a regional lymph node (LN) metastasis prediction model for patients with esophageal squamous cell carcinoma (ESCC) that can learn and adaptively integrate preoperative computed tomography (CT) image features and nonimaging clinical parameters. Contrast-enhanced CT scans t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of radiation oncology, biology, physics biology, physics, 2023-07, Vol.116 (3), p.676-689
Hauptverfasser: Ding, Mingjun, Cui, Hui, Li, Butuo, Zou, Bing, Fan, Bingjie, Ma, Li, Wang, Zhendan, Li, Wanlong, Yu, Jinming, Wang, Linlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 689
container_issue 3
container_start_page 676
container_title International journal of radiation oncology, biology, physics
container_volume 116
creator Ding, Mingjun
Cui, Hui
Li, Butuo
Zou, Bing
Fan, Bingjie
Ma, Li
Wang, Zhendan
Li, Wanlong
Yu, Jinming
Wang, Linlin
description This study aimed to propose a regional lymph node (LN) metastasis prediction model for patients with esophageal squamous cell carcinoma (ESCC) that can learn and adaptively integrate preoperative computed tomography (CT) image features and nonimaging clinical parameters. Contrast-enhanced CT scans taken 2 weeks before surgery and 20 clinical factors, including general, pathologic, hematological, and diagnostic information, were collected from 357 patients with ESCC between October 2013 and November 2018. There were 999 regional LNs (857 negative, 142 positive) with pathologically confirmed status after surgery. All LNs were randomly divided into a training set (n = 738) and a validation set (n = 261) for testing. The feature-wise attentional graph neural network (FAGNN) was composed of (1) deep image feature extraction by the encoder of 3-dimensional UNet and high-level nonimaging factor representation by the clinical parameter encoder; (2) a feature-wise attention module for feature embedding with learnable adaptive weights; and (3) a graph attention layer to integrate the embedded features for final LN level metastasis prediction. Among the 4 models we constructed, FAGNN using both CT and clinical parameters as input is the model with the best performance, and the area under the curve (AUC) reaches 0.872, which is better than manual CT diagnosis method, multivariable model using CT only (AUC = 0.797), multivariable model with combined CT and clinical parameters (AUC = 0.846), and our FAGNN using CT only (AUC = 0.853). Our adaptive integration model improved the metastatic LN prediction performance based on CT and clinical parameters. Our model has the potential to foster effective fusion of multisourced parameters and to support early prognosis and personalized surgery or radiation therapy planning in patients with ESCC.
doi_str_mv 10.1016/j.ijrobp.2022.12.050
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2765778236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360301623000020</els_id><sourcerecordid>2765778236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-571105838af56ec1c7ce551393d3fe611b929ac8ada0cf399124d44de448f8083</originalsourceid><addsrcrecordid>eNp9kduKFDEQhoMo7rj6BiK59KbbHPp4IyzNzrowjoIrehcySfVMxu6kN0nvMg_nu5lmVi-FgqLg--v0I_SWkpwSWn045ubo3W7KGWEspywnJXmGVrSp24yX5c_naEV4RTKe4Av0KoQjIYTSuniJLnhVFZQUZIV-39oIey-jsXv81YObYCkeAHdunOYIGt-50SViOpywtBp3g7FGyQGvpYrOB9w7jzencTrgrdOAP0OUIYUJSz9tVDTOYmPxdXDTQe4hSb_dz3J0c8AdDAPupFfGulHi3QmvQcbZQ_bDBMBXMYJd9Elzs6yAtzD7VGwhPjr_6zV60cshwJunfIm-r6_vuk_Z5svNbXe1yRSvWMzKmlJSNryRfVmBoqpWUJaUt1zzHipKdy1rpWqklkT1vG0pK3RRaCiKpm9Iwy_R-3Pfybv7GUIUowkq7S4tpDMEq6uyrhvGq4QWZ1R5F4KHXkzejNKfBCViMU4cxdk4sRgnKBPJuCR79zRh3o2g_4n-OpWAj2cA0p0PBrwIyoBV6cMeVBTamf9P-AMkNa-a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765778236</pqid></control><display><type>article</type><title>Integrating Preoperative Computed Tomography and Clinical Factors for Lymph Node Metastasis Prediction in Esophageal Squamous Cell Carcinoma by Feature-Wise Attentional Graph Neural Network</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ding, Mingjun ; Cui, Hui ; Li, Butuo ; Zou, Bing ; Fan, Bingjie ; Ma, Li ; Wang, Zhendan ; Li, Wanlong ; Yu, Jinming ; Wang, Linlin</creator><creatorcontrib>Ding, Mingjun ; Cui, Hui ; Li, Butuo ; Zou, Bing ; Fan, Bingjie ; Ma, Li ; Wang, Zhendan ; Li, Wanlong ; Yu, Jinming ; Wang, Linlin</creatorcontrib><description>This study aimed to propose a regional lymph node (LN) metastasis prediction model for patients with esophageal squamous cell carcinoma (ESCC) that can learn and adaptively integrate preoperative computed tomography (CT) image features and nonimaging clinical parameters. Contrast-enhanced CT scans taken 2 weeks before surgery and 20 clinical factors, including general, pathologic, hematological, and diagnostic information, were collected from 357 patients with ESCC between October 2013 and November 2018. There were 999 regional LNs (857 negative, 142 positive) with pathologically confirmed status after surgery. All LNs were randomly divided into a training set (n = 738) and a validation set (n = 261) for testing. The feature-wise attentional graph neural network (FAGNN) was composed of (1) deep image feature extraction by the encoder of 3-dimensional UNet and high-level nonimaging factor representation by the clinical parameter encoder; (2) a feature-wise attention module for feature embedding with learnable adaptive weights; and (3) a graph attention layer to integrate the embedded features for final LN level metastasis prediction. Among the 4 models we constructed, FAGNN using both CT and clinical parameters as input is the model with the best performance, and the area under the curve (AUC) reaches 0.872, which is better than manual CT diagnosis method, multivariable model using CT only (AUC = 0.797), multivariable model with combined CT and clinical parameters (AUC = 0.846), and our FAGNN using CT only (AUC = 0.853). Our adaptive integration model improved the metastatic LN prediction performance based on CT and clinical parameters. Our model has the potential to foster effective fusion of multisourced parameters and to support early prognosis and personalized surgery or radiation therapy planning in patients with ESCC.</description><identifier>ISSN: 0360-3016</identifier><identifier>EISSN: 1879-355X</identifier><identifier>DOI: 10.1016/j.ijrobp.2022.12.050</identifier><identifier>PMID: 36641040</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Esophageal Neoplasms - diagnostic imaging ; Esophageal Neoplasms - pathology ; Esophageal Neoplasms - surgery ; Esophageal Squamous Cell Carcinoma - diagnostic imaging ; Esophageal Squamous Cell Carcinoma - surgery ; Humans ; Lymph Nodes - diagnostic imaging ; Lymph Nodes - pathology ; Lymphatic Metastasis - diagnostic imaging ; Lymphatic Metastasis - pathology ; Retrospective Studies ; Tomography, X-Ray Computed - methods</subject><ispartof>International journal of radiation oncology, biology, physics, 2023-07, Vol.116 (3), p.676-689</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-571105838af56ec1c7ce551393d3fe611b929ac8ada0cf399124d44de448f8083</citedby><cites>FETCH-LOGICAL-c362t-571105838af56ec1c7ce551393d3fe611b929ac8ada0cf399124d44de448f8083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360301623000020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36641040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Mingjun</creatorcontrib><creatorcontrib>Cui, Hui</creatorcontrib><creatorcontrib>Li, Butuo</creatorcontrib><creatorcontrib>Zou, Bing</creatorcontrib><creatorcontrib>Fan, Bingjie</creatorcontrib><creatorcontrib>Ma, Li</creatorcontrib><creatorcontrib>Wang, Zhendan</creatorcontrib><creatorcontrib>Li, Wanlong</creatorcontrib><creatorcontrib>Yu, Jinming</creatorcontrib><creatorcontrib>Wang, Linlin</creatorcontrib><title>Integrating Preoperative Computed Tomography and Clinical Factors for Lymph Node Metastasis Prediction in Esophageal Squamous Cell Carcinoma by Feature-Wise Attentional Graph Neural Network</title><title>International journal of radiation oncology, biology, physics</title><addtitle>Int J Radiat Oncol Biol Phys</addtitle><description>This study aimed to propose a regional lymph node (LN) metastasis prediction model for patients with esophageal squamous cell carcinoma (ESCC) that can learn and adaptively integrate preoperative computed tomography (CT) image features and nonimaging clinical parameters. Contrast-enhanced CT scans taken 2 weeks before surgery and 20 clinical factors, including general, pathologic, hematological, and diagnostic information, were collected from 357 patients with ESCC between October 2013 and November 2018. There were 999 regional LNs (857 negative, 142 positive) with pathologically confirmed status after surgery. All LNs were randomly divided into a training set (n = 738) and a validation set (n = 261) for testing. The feature-wise attentional graph neural network (FAGNN) was composed of (1) deep image feature extraction by the encoder of 3-dimensional UNet and high-level nonimaging factor representation by the clinical parameter encoder; (2) a feature-wise attention module for feature embedding with learnable adaptive weights; and (3) a graph attention layer to integrate the embedded features for final LN level metastasis prediction. Among the 4 models we constructed, FAGNN using both CT and clinical parameters as input is the model with the best performance, and the area under the curve (AUC) reaches 0.872, which is better than manual CT diagnosis method, multivariable model using CT only (AUC = 0.797), multivariable model with combined CT and clinical parameters (AUC = 0.846), and our FAGNN using CT only (AUC = 0.853). Our adaptive integration model improved the metastatic LN prediction performance based on CT and clinical parameters. Our model has the potential to foster effective fusion of multisourced parameters and to support early prognosis and personalized surgery or radiation therapy planning in patients with ESCC.</description><subject>Esophageal Neoplasms - diagnostic imaging</subject><subject>Esophageal Neoplasms - pathology</subject><subject>Esophageal Neoplasms - surgery</subject><subject>Esophageal Squamous Cell Carcinoma - diagnostic imaging</subject><subject>Esophageal Squamous Cell Carcinoma - surgery</subject><subject>Humans</subject><subject>Lymph Nodes - diagnostic imaging</subject><subject>Lymph Nodes - pathology</subject><subject>Lymphatic Metastasis - diagnostic imaging</subject><subject>Lymphatic Metastasis - pathology</subject><subject>Retrospective Studies</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>0360-3016</issn><issn>1879-355X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kduKFDEQhoMo7rj6BiK59KbbHPp4IyzNzrowjoIrehcySfVMxu6kN0nvMg_nu5lmVi-FgqLg--v0I_SWkpwSWn045ubo3W7KGWEspywnJXmGVrSp24yX5c_naEV4RTKe4Av0KoQjIYTSuniJLnhVFZQUZIV-39oIey-jsXv81YObYCkeAHdunOYIGt-50SViOpywtBp3g7FGyQGvpYrOB9w7jzencTrgrdOAP0OUIYUJSz9tVDTOYmPxdXDTQe4hSb_dz3J0c8AdDAPupFfGulHi3QmvQcbZQ_bDBMBXMYJd9Elzs6yAtzD7VGwhPjr_6zV60cshwJunfIm-r6_vuk_Z5svNbXe1yRSvWMzKmlJSNryRfVmBoqpWUJaUt1zzHipKdy1rpWqklkT1vG0pK3RRaCiKpm9Iwy_R-3Pfybv7GUIUowkq7S4tpDMEq6uyrhvGq4QWZ1R5F4KHXkzejNKfBCViMU4cxdk4sRgnKBPJuCR79zRh3o2g_4n-OpWAj2cA0p0PBrwIyoBV6cMeVBTamf9P-AMkNa-a</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Ding, Mingjun</creator><creator>Cui, Hui</creator><creator>Li, Butuo</creator><creator>Zou, Bing</creator><creator>Fan, Bingjie</creator><creator>Ma, Li</creator><creator>Wang, Zhendan</creator><creator>Li, Wanlong</creator><creator>Yu, Jinming</creator><creator>Wang, Linlin</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230701</creationdate><title>Integrating Preoperative Computed Tomography and Clinical Factors for Lymph Node Metastasis Prediction in Esophageal Squamous Cell Carcinoma by Feature-Wise Attentional Graph Neural Network</title><author>Ding, Mingjun ; Cui, Hui ; Li, Butuo ; Zou, Bing ; Fan, Bingjie ; Ma, Li ; Wang, Zhendan ; Li, Wanlong ; Yu, Jinming ; Wang, Linlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-571105838af56ec1c7ce551393d3fe611b929ac8ada0cf399124d44de448f8083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Esophageal Neoplasms - diagnostic imaging</topic><topic>Esophageal Neoplasms - pathology</topic><topic>Esophageal Neoplasms - surgery</topic><topic>Esophageal Squamous Cell Carcinoma - diagnostic imaging</topic><topic>Esophageal Squamous Cell Carcinoma - surgery</topic><topic>Humans</topic><topic>Lymph Nodes - diagnostic imaging</topic><topic>Lymph Nodes - pathology</topic><topic>Lymphatic Metastasis - diagnostic imaging</topic><topic>Lymphatic Metastasis - pathology</topic><topic>Retrospective Studies</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Mingjun</creatorcontrib><creatorcontrib>Cui, Hui</creatorcontrib><creatorcontrib>Li, Butuo</creatorcontrib><creatorcontrib>Zou, Bing</creatorcontrib><creatorcontrib>Fan, Bingjie</creatorcontrib><creatorcontrib>Ma, Li</creatorcontrib><creatorcontrib>Wang, Zhendan</creatorcontrib><creatorcontrib>Li, Wanlong</creatorcontrib><creatorcontrib>Yu, Jinming</creatorcontrib><creatorcontrib>Wang, Linlin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of radiation oncology, biology, physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Mingjun</au><au>Cui, Hui</au><au>Li, Butuo</au><au>Zou, Bing</au><au>Fan, Bingjie</au><au>Ma, Li</au><au>Wang, Zhendan</au><au>Li, Wanlong</au><au>Yu, Jinming</au><au>Wang, Linlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Preoperative Computed Tomography and Clinical Factors for Lymph Node Metastasis Prediction in Esophageal Squamous Cell Carcinoma by Feature-Wise Attentional Graph Neural Network</atitle><jtitle>International journal of radiation oncology, biology, physics</jtitle><addtitle>Int J Radiat Oncol Biol Phys</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>116</volume><issue>3</issue><spage>676</spage><epage>689</epage><pages>676-689</pages><issn>0360-3016</issn><eissn>1879-355X</eissn><abstract>This study aimed to propose a regional lymph node (LN) metastasis prediction model for patients with esophageal squamous cell carcinoma (ESCC) that can learn and adaptively integrate preoperative computed tomography (CT) image features and nonimaging clinical parameters. Contrast-enhanced CT scans taken 2 weeks before surgery and 20 clinical factors, including general, pathologic, hematological, and diagnostic information, were collected from 357 patients with ESCC between October 2013 and November 2018. There were 999 regional LNs (857 negative, 142 positive) with pathologically confirmed status after surgery. All LNs were randomly divided into a training set (n = 738) and a validation set (n = 261) for testing. The feature-wise attentional graph neural network (FAGNN) was composed of (1) deep image feature extraction by the encoder of 3-dimensional UNet and high-level nonimaging factor representation by the clinical parameter encoder; (2) a feature-wise attention module for feature embedding with learnable adaptive weights; and (3) a graph attention layer to integrate the embedded features for final LN level metastasis prediction. Among the 4 models we constructed, FAGNN using both CT and clinical parameters as input is the model with the best performance, and the area under the curve (AUC) reaches 0.872, which is better than manual CT diagnosis method, multivariable model using CT only (AUC = 0.797), multivariable model with combined CT and clinical parameters (AUC = 0.846), and our FAGNN using CT only (AUC = 0.853). Our adaptive integration model improved the metastatic LN prediction performance based on CT and clinical parameters. Our model has the potential to foster effective fusion of multisourced parameters and to support early prognosis and personalized surgery or radiation therapy planning in patients with ESCC.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36641040</pmid><doi>10.1016/j.ijrobp.2022.12.050</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3016
ispartof International journal of radiation oncology, biology, physics, 2023-07, Vol.116 (3), p.676-689
issn 0360-3016
1879-355X
language eng
recordid cdi_proquest_miscellaneous_2765778236
source MEDLINE; Elsevier ScienceDirect Journals
subjects Esophageal Neoplasms - diagnostic imaging
Esophageal Neoplasms - pathology
Esophageal Neoplasms - surgery
Esophageal Squamous Cell Carcinoma - diagnostic imaging
Esophageal Squamous Cell Carcinoma - surgery
Humans
Lymph Nodes - diagnostic imaging
Lymph Nodes - pathology
Lymphatic Metastasis - diagnostic imaging
Lymphatic Metastasis - pathology
Retrospective Studies
Tomography, X-Ray Computed - methods
title Integrating Preoperative Computed Tomography and Clinical Factors for Lymph Node Metastasis Prediction in Esophageal Squamous Cell Carcinoma by Feature-Wise Attentional Graph Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A06%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Preoperative%20Computed%20Tomography%20and%20Clinical%20Factors%20for%20Lymph%20Node%20Metastasis%20Prediction%20in%20Esophageal%20Squamous%20Cell%20Carcinoma%20by%20Feature-Wise%20Attentional%20Graph%20Neural%20Network&rft.jtitle=International%20journal%20of%20radiation%20oncology,%20biology,%20physics&rft.au=Ding,%20Mingjun&rft.date=2023-07-01&rft.volume=116&rft.issue=3&rft.spage=676&rft.epage=689&rft.pages=676-689&rft.issn=0360-3016&rft.eissn=1879-355X&rft_id=info:doi/10.1016/j.ijrobp.2022.12.050&rft_dat=%3Cproquest_cross%3E2765778236%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2765778236&rft_id=info:pmid/36641040&rft_els_id=S0360301623000020&rfr_iscdi=true