Phase-Separation Propensity of Non-ionic Amino Acids in Peptide-Based Complex Coacervation Systems

Uncovering the sequence-encoded molecular grammar that governs the liquid–liquid phase separation (LLPS) of proteins is a crucial issue to understand dynamic compartmentalization in living cells and the emergence of protocells. Here, we present a model LLPS system that is induced by electrostatic in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2023-02, Vol.24 (2), p.704-713
Hauptverfasser: Akahoshi, Yuto, Sugai, Hiroka, Mimura, Masahiro, Shinkai, Yoichi, Kurita, Ryoji, Shiraki, Kentaro, Tomita, Shunsuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 713
container_issue 2
container_start_page 704
container_title Biomacromolecules
container_volume 24
creator Akahoshi, Yuto
Sugai, Hiroka
Mimura, Masahiro
Shinkai, Yoichi
Kurita, Ryoji
Shiraki, Kentaro
Tomita, Shunsuke
description Uncovering the sequence-encoded molecular grammar that governs the liquid–liquid phase separation (LLPS) of proteins is a crucial issue to understand dynamic compartmentalization in living cells and the emergence of protocells. Here, we present a model LLPS system that is induced by electrostatic interactions between anionic nucleic acids and cationic oligolysine peptides modified with 12 different non-ionic amino acids, with the aim of creating an index of “phase-separation propensity” that represents the contribution of non-ionic amino acids to LLPS. Based on turbidimetric titrations and microscopic observations, the lower critical peptide concentrations where LLPS occurs (C crit) were determined for each peptide. A correlation analysis between these values and known amino acid indices unexpectedly showed that eight non-ionic amino acids inhibit the generation of LLPS, whereby the extent of inhibition increases with increasing hydrophobicity of the amino acids. However, three aromatic amino acids deviate from this trend and rather markedly promote LLPS despite their high hydrophobicity. A comparison with double-stranded DNA and polyacrylic acid revealed that this is primarily due to interactions with DNA nucleobases. Our approach to quantify the contribution of non-ionic amino acids can be expected to help to provide a more accurate description and prediction of the LLPS propensity of peptides/proteins.
doi_str_mv 10.1021/acs.biomac.2c01148
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2765777309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765777309</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-d495d95ddc882d1df5c06f4f21f73d536ca8df994d68608198c506f563c363e03</originalsourceid><addsrcrecordid>eNp9kFtLwzAYhoMobk7_gBfSS29ac2jS9nIOTzB0ML0OWQ6Y0TY1acX9ezM7vRQ--D7C876QB4BLBDMEMboRMmQb6xohMywhQnl5BKaIYpbmDOLjn5umRVEVE3AWwhZCWJGcnoIJYSyPATIFm9W7CDpd60540VvXJivvOt0G2-8SZ5Jn16bx1cpk3tjWJXNpVUhsxHTXW6XT2xhXycI1Xa2_4hZS-8-xab0LvW7COTgxog764rBn4O3-7nXxmC5fHp4W82UqSI77VOUVVXGULEuskDJUQmZyg5EpiKKESVEqU1W5YiWDJapKSSNAGZGEEQ3JDFyPvZ13H4MOPW9skLquRavdEDguGC2KgkQJM4BHVHoXgteGd942wu84gnzvlke3fHTLD25j6OrQP2warf4ivzIjkI3APrx1g2_jd_9r_AYscocm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765777309</pqid></control><display><type>article</type><title>Phase-Separation Propensity of Non-ionic Amino Acids in Peptide-Based Complex Coacervation Systems</title><source>MEDLINE</source><source>ACS Publications</source><creator>Akahoshi, Yuto ; Sugai, Hiroka ; Mimura, Masahiro ; Shinkai, Yoichi ; Kurita, Ryoji ; Shiraki, Kentaro ; Tomita, Shunsuke</creator><creatorcontrib>Akahoshi, Yuto ; Sugai, Hiroka ; Mimura, Masahiro ; Shinkai, Yoichi ; Kurita, Ryoji ; Shiraki, Kentaro ; Tomita, Shunsuke</creatorcontrib><description>Uncovering the sequence-encoded molecular grammar that governs the liquid–liquid phase separation (LLPS) of proteins is a crucial issue to understand dynamic compartmentalization in living cells and the emergence of protocells. Here, we present a model LLPS system that is induced by electrostatic interactions between anionic nucleic acids and cationic oligolysine peptides modified with 12 different non-ionic amino acids, with the aim of creating an index of “phase-separation propensity” that represents the contribution of non-ionic amino acids to LLPS. Based on turbidimetric titrations and microscopic observations, the lower critical peptide concentrations where LLPS occurs (C crit) were determined for each peptide. A correlation analysis between these values and known amino acid indices unexpectedly showed that eight non-ionic amino acids inhibit the generation of LLPS, whereby the extent of inhibition increases with increasing hydrophobicity of the amino acids. However, three aromatic amino acids deviate from this trend and rather markedly promote LLPS despite their high hydrophobicity. A comparison with double-stranded DNA and polyacrylic acid revealed that this is primarily due to interactions with DNA nucleobases. Our approach to quantify the contribution of non-ionic amino acids can be expected to help to provide a more accurate description and prediction of the LLPS propensity of peptides/proteins.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/acs.biomac.2c01148</identifier><identifier>PMID: 36640113</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acids ; DNA ; Peptides</subject><ispartof>Biomacromolecules, 2023-02, Vol.24 (2), p.704-713</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-d495d95ddc882d1df5c06f4f21f73d536ca8df994d68608198c506f563c363e03</citedby><cites>FETCH-LOGICAL-a342t-d495d95ddc882d1df5c06f4f21f73d536ca8df994d68608198c506f563c363e03</cites><orcidid>0000-0003-3438-4076 ; 0000-0002-0586-6976 ; 0000-0001-5666-9561 ; 0000-0002-5957-0011</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biomac.2c01148$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biomac.2c01148$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36640113$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Akahoshi, Yuto</creatorcontrib><creatorcontrib>Sugai, Hiroka</creatorcontrib><creatorcontrib>Mimura, Masahiro</creatorcontrib><creatorcontrib>Shinkai, Yoichi</creatorcontrib><creatorcontrib>Kurita, Ryoji</creatorcontrib><creatorcontrib>Shiraki, Kentaro</creatorcontrib><creatorcontrib>Tomita, Shunsuke</creatorcontrib><title>Phase-Separation Propensity of Non-ionic Amino Acids in Peptide-Based Complex Coacervation Systems</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>Uncovering the sequence-encoded molecular grammar that governs the liquid–liquid phase separation (LLPS) of proteins is a crucial issue to understand dynamic compartmentalization in living cells and the emergence of protocells. Here, we present a model LLPS system that is induced by electrostatic interactions between anionic nucleic acids and cationic oligolysine peptides modified with 12 different non-ionic amino acids, with the aim of creating an index of “phase-separation propensity” that represents the contribution of non-ionic amino acids to LLPS. Based on turbidimetric titrations and microscopic observations, the lower critical peptide concentrations where LLPS occurs (C crit) were determined for each peptide. A correlation analysis between these values and known amino acid indices unexpectedly showed that eight non-ionic amino acids inhibit the generation of LLPS, whereby the extent of inhibition increases with increasing hydrophobicity of the amino acids. However, three aromatic amino acids deviate from this trend and rather markedly promote LLPS despite their high hydrophobicity. A comparison with double-stranded DNA and polyacrylic acid revealed that this is primarily due to interactions with DNA nucleobases. Our approach to quantify the contribution of non-ionic amino acids can be expected to help to provide a more accurate description and prediction of the LLPS propensity of peptides/proteins.</description><subject>Amino Acids</subject><subject>DNA</subject><subject>Peptides</subject><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kFtLwzAYhoMobk7_gBfSS29ac2jS9nIOTzB0ML0OWQ6Y0TY1acX9ezM7vRQ--D7C876QB4BLBDMEMboRMmQb6xohMywhQnl5BKaIYpbmDOLjn5umRVEVE3AWwhZCWJGcnoIJYSyPATIFm9W7CDpd60540VvXJivvOt0G2-8SZ5Jn16bx1cpk3tjWJXNpVUhsxHTXW6XT2xhXycI1Xa2_4hZS-8-xab0LvW7COTgxog764rBn4O3-7nXxmC5fHp4W82UqSI77VOUVVXGULEuskDJUQmZyg5EpiKKESVEqU1W5YiWDJapKSSNAGZGEEQ3JDFyPvZ13H4MOPW9skLquRavdEDguGC2KgkQJM4BHVHoXgteGd942wu84gnzvlke3fHTLD25j6OrQP2warf4ivzIjkI3APrx1g2_jd_9r_AYscocm</recordid><startdate>20230213</startdate><enddate>20230213</enddate><creator>Akahoshi, Yuto</creator><creator>Sugai, Hiroka</creator><creator>Mimura, Masahiro</creator><creator>Shinkai, Yoichi</creator><creator>Kurita, Ryoji</creator><creator>Shiraki, Kentaro</creator><creator>Tomita, Shunsuke</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3438-4076</orcidid><orcidid>https://orcid.org/0000-0002-0586-6976</orcidid><orcidid>https://orcid.org/0000-0001-5666-9561</orcidid><orcidid>https://orcid.org/0000-0002-5957-0011</orcidid></search><sort><creationdate>20230213</creationdate><title>Phase-Separation Propensity of Non-ionic Amino Acids in Peptide-Based Complex Coacervation Systems</title><author>Akahoshi, Yuto ; Sugai, Hiroka ; Mimura, Masahiro ; Shinkai, Yoichi ; Kurita, Ryoji ; Shiraki, Kentaro ; Tomita, Shunsuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-d495d95ddc882d1df5c06f4f21f73d536ca8df994d68608198c506f563c363e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amino Acids</topic><topic>DNA</topic><topic>Peptides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akahoshi, Yuto</creatorcontrib><creatorcontrib>Sugai, Hiroka</creatorcontrib><creatorcontrib>Mimura, Masahiro</creatorcontrib><creatorcontrib>Shinkai, Yoichi</creatorcontrib><creatorcontrib>Kurita, Ryoji</creatorcontrib><creatorcontrib>Shiraki, Kentaro</creatorcontrib><creatorcontrib>Tomita, Shunsuke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akahoshi, Yuto</au><au>Sugai, Hiroka</au><au>Mimura, Masahiro</au><au>Shinkai, Yoichi</au><au>Kurita, Ryoji</au><au>Shiraki, Kentaro</au><au>Tomita, Shunsuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-Separation Propensity of Non-ionic Amino Acids in Peptide-Based Complex Coacervation Systems</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2023-02-13</date><risdate>2023</risdate><volume>24</volume><issue>2</issue><spage>704</spage><epage>713</epage><pages>704-713</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>Uncovering the sequence-encoded molecular grammar that governs the liquid–liquid phase separation (LLPS) of proteins is a crucial issue to understand dynamic compartmentalization in living cells and the emergence of protocells. Here, we present a model LLPS system that is induced by electrostatic interactions between anionic nucleic acids and cationic oligolysine peptides modified with 12 different non-ionic amino acids, with the aim of creating an index of “phase-separation propensity” that represents the contribution of non-ionic amino acids to LLPS. Based on turbidimetric titrations and microscopic observations, the lower critical peptide concentrations where LLPS occurs (C crit) were determined for each peptide. A correlation analysis between these values and known amino acid indices unexpectedly showed that eight non-ionic amino acids inhibit the generation of LLPS, whereby the extent of inhibition increases with increasing hydrophobicity of the amino acids. However, three aromatic amino acids deviate from this trend and rather markedly promote LLPS despite their high hydrophobicity. A comparison with double-stranded DNA and polyacrylic acid revealed that this is primarily due to interactions with DNA nucleobases. Our approach to quantify the contribution of non-ionic amino acids can be expected to help to provide a more accurate description and prediction of the LLPS propensity of peptides/proteins.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36640113</pmid><doi>10.1021/acs.biomac.2c01148</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3438-4076</orcidid><orcidid>https://orcid.org/0000-0002-0586-6976</orcidid><orcidid>https://orcid.org/0000-0001-5666-9561</orcidid><orcidid>https://orcid.org/0000-0002-5957-0011</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1525-7797
ispartof Biomacromolecules, 2023-02, Vol.24 (2), p.704-713
issn 1525-7797
1526-4602
language eng
recordid cdi_proquest_miscellaneous_2765777309
source MEDLINE; ACS Publications
subjects Amino Acids
DNA
Peptides
title Phase-Separation Propensity of Non-ionic Amino Acids in Peptide-Based Complex Coacervation Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-Separation%20Propensity%20of%20Non-ionic%20Amino%20Acids%20in%20Peptide-Based%20Complex%20Coacervation%20Systems&rft.jtitle=Biomacromolecules&rft.au=Akahoshi,%20Yuto&rft.date=2023-02-13&rft.volume=24&rft.issue=2&rft.spage=704&rft.epage=713&rft.pages=704-713&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/acs.biomac.2c01148&rft_dat=%3Cproquest_cross%3E2765777309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2765777309&rft_id=info:pmid/36640113&rfr_iscdi=true