Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis
Tuning catalyst microenvironments by electrolytes and organic modifications is effective in improving CO 2 electrolysis performance. An alternative way is to use mixed CO/CO 2 feeds from incomplete industrial combustion of fossil fuels, but its effect on catalyst microenvironments has been poorly un...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2023-03, Vol.18 (3), p.299-306 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 306 |
---|---|
container_issue | 3 |
container_start_page | 299 |
container_title | Nature nanotechnology |
container_volume | 18 |
creator | Wei, Pengfei Gao, Dunfeng Liu, Tianfu Li, Hefei Sang, Jiaqi Wang, Chao Cai, Rui Wang, Guoxiong Bao, Xinhe |
description | Tuning catalyst microenvironments by electrolytes and organic modifications is effective in improving CO
2
electrolysis performance. An alternative way is to use mixed CO/CO
2
feeds from incomplete industrial combustion of fossil fuels, but its effect on catalyst microenvironments has been poorly understood. Here we investigate CO/CO
2
co-electrolysis over CuO nanosheets in an alkaline membrane electrode assembly electrolyser. With increasing CO pressure in the feed, the major product gradually switches from ethylene to acetate, attributed to the increased CO coverage and local pH. Under optimized conditions, the Faradaic efficiency and partial current density of multicarbon products reach 90.0% and 3.1 A cm
−2
, corresponding to a carbon selectivity of 100.0% and yield of 75.0%, outperforming thermocatalytic CO hydrogenation. The scale-up demonstration using an electrolyser stack achieves the highest ethylene formation rate of 457.5 ml min
–1
at 150 A and acetate formation rate of 2.97 g min
–1
at 250 A.
Catalyst microenvironment induced by mixed CO/CO
2
feeds in an alkaline membrane assembly electrolyser determines the catalytic activity and product selectivity in CO
2
/CO electrolysis. |
doi_str_mv | 10.1038/s41565-022-01286-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2765776693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787389776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-43b78ab85ce62341dc94962d50ada4d8cfb4029d08eacb6ccfaa4447986526263</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhoMoWKt_wNOCFy9rN_uVzVGCX1DoRW_CstlM2i1pUne3lfx700YUPHiaGXjel-FJkuuU3KWEqVngqZACE0oxSamSuD9JJmnGFWYsF6c_u8rOk4sQ1oQImlM-Sd6Lbg_eLAFX3u2hRQEasNHtXexR-HTRrlDtuw2CuOobaAHFDhkL0URArkUrt1xhfziKBZ0VC3SM-67pgwuXyVltmgBX33OavD0-vBbPeL54einu59gyQSPmrMyUKZWwICnjaWVznktaCWIqwytl65ITmldEgbGltLY2hnOe5UoKKqlk0-R27N367mMHIeqNCxaaxrTQ7YKmmRRZJmXOBvTmD7rudr4dvhsolTGVD-BA0ZGyvgvBQ6233m2M73VK9EG4HoXrQbg-Ctf9EGJjKAxwuwT_W_1P6gu1toQr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787389776</pqid></control><display><type>article</type><title>Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wei, Pengfei ; Gao, Dunfeng ; Liu, Tianfu ; Li, Hefei ; Sang, Jiaqi ; Wang, Chao ; Cai, Rui ; Wang, Guoxiong ; Bao, Xinhe</creator><creatorcontrib>Wei, Pengfei ; Gao, Dunfeng ; Liu, Tianfu ; Li, Hefei ; Sang, Jiaqi ; Wang, Chao ; Cai, Rui ; Wang, Guoxiong ; Bao, Xinhe</creatorcontrib><description>Tuning catalyst microenvironments by electrolytes and organic modifications is effective in improving CO
2
electrolysis performance. An alternative way is to use mixed CO/CO
2
feeds from incomplete industrial combustion of fossil fuels, but its effect on catalyst microenvironments has been poorly understood. Here we investigate CO/CO
2
co-electrolysis over CuO nanosheets in an alkaline membrane electrode assembly electrolyser. With increasing CO pressure in the feed, the major product gradually switches from ethylene to acetate, attributed to the increased CO coverage and local pH. Under optimized conditions, the Faradaic efficiency and partial current density of multicarbon products reach 90.0% and 3.1 A cm
−2
, corresponding to a carbon selectivity of 100.0% and yield of 75.0%, outperforming thermocatalytic CO hydrogenation. The scale-up demonstration using an electrolyser stack achieves the highest ethylene formation rate of 457.5 ml min
–1
at 150 A and acetate formation rate of 2.97 g min
–1
at 250 A.
Catalyst microenvironment induced by mixed CO/CO
2
feeds in an alkaline membrane assembly electrolyser determines the catalytic activity and product selectivity in CO
2
/CO electrolysis.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-022-01286-y</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/161/886 ; 639/638/77/886 ; Acetic acid ; Assembly ; Carbon ; Carbon dioxide ; Carbon monoxide ; Catalysts ; Catalytic activity ; Chemistry and Materials Science ; Electrodes ; Electrolysis ; Electrolytes ; Ethylene ; Fossil fuels ; Hydrogenation ; Laboratories ; Materials Science ; Membranes ; Microenvironments ; Morphology ; Nanotechnology ; Nanotechnology and Microengineering ; Selectivity ; Spectrum analysis ; Switches ; Transmission electron microscopy</subject><ispartof>Nature nanotechnology, 2023-03, Vol.18 (3), p.299-306</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-43b78ab85ce62341dc94962d50ada4d8cfb4029d08eacb6ccfaa4447986526263</citedby><cites>FETCH-LOGICAL-c352t-43b78ab85ce62341dc94962d50ada4d8cfb4029d08eacb6ccfaa4447986526263</cites><orcidid>0000-0002-2472-7349 ; 0000-0001-9404-6429 ; 0000-0001-6042-1171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-022-01286-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-022-01286-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wei, Pengfei</creatorcontrib><creatorcontrib>Gao, Dunfeng</creatorcontrib><creatorcontrib>Liu, Tianfu</creatorcontrib><creatorcontrib>Li, Hefei</creatorcontrib><creatorcontrib>Sang, Jiaqi</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Cai, Rui</creatorcontrib><creatorcontrib>Wang, Guoxiong</creatorcontrib><creatorcontrib>Bao, Xinhe</creatorcontrib><title>Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><description>Tuning catalyst microenvironments by electrolytes and organic modifications is effective in improving CO
2
electrolysis performance. An alternative way is to use mixed CO/CO
2
feeds from incomplete industrial combustion of fossil fuels, but its effect on catalyst microenvironments has been poorly understood. Here we investigate CO/CO
2
co-electrolysis over CuO nanosheets in an alkaline membrane electrode assembly electrolyser. With increasing CO pressure in the feed, the major product gradually switches from ethylene to acetate, attributed to the increased CO coverage and local pH. Under optimized conditions, the Faradaic efficiency and partial current density of multicarbon products reach 90.0% and 3.1 A cm
−2
, corresponding to a carbon selectivity of 100.0% and yield of 75.0%, outperforming thermocatalytic CO hydrogenation. The scale-up demonstration using an electrolyser stack achieves the highest ethylene formation rate of 457.5 ml min
–1
at 150 A and acetate formation rate of 2.97 g min
–1
at 250 A.
Catalyst microenvironment induced by mixed CO/CO
2
feeds in an alkaline membrane assembly electrolyser determines the catalytic activity and product selectivity in CO
2
/CO electrolysis.</description><subject>639/638/161/886</subject><subject>639/638/77/886</subject><subject>Acetic acid</subject><subject>Assembly</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemistry and Materials Science</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>Electrolytes</subject><subject>Ethylene</subject><subject>Fossil fuels</subject><subject>Hydrogenation</subject><subject>Laboratories</subject><subject>Materials Science</subject><subject>Membranes</subject><subject>Microenvironments</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Selectivity</subject><subject>Spectrum analysis</subject><subject>Switches</subject><subject>Transmission electron microscopy</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1Lw0AQhoMoWKt_wNOCFy9rN_uVzVGCX1DoRW_CstlM2i1pUne3lfx700YUPHiaGXjel-FJkuuU3KWEqVngqZACE0oxSamSuD9JJmnGFWYsF6c_u8rOk4sQ1oQImlM-Sd6Lbg_eLAFX3u2hRQEasNHtXexR-HTRrlDtuw2CuOobaAHFDhkL0URArkUrt1xhfziKBZ0VC3SM-67pgwuXyVltmgBX33OavD0-vBbPeL54einu59gyQSPmrMyUKZWwICnjaWVznktaCWIqwytl65ITmldEgbGltLY2hnOe5UoKKqlk0-R27N367mMHIeqNCxaaxrTQ7YKmmRRZJmXOBvTmD7rudr4dvhsolTGVD-BA0ZGyvgvBQ6233m2M73VK9EG4HoXrQbg-Ctf9EGJjKAxwuwT_W_1P6gu1toQr</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Wei, Pengfei</creator><creator>Gao, Dunfeng</creator><creator>Liu, Tianfu</creator><creator>Li, Hefei</creator><creator>Sang, Jiaqi</creator><creator>Wang, Chao</creator><creator>Cai, Rui</creator><creator>Wang, Guoxiong</creator><creator>Bao, Xinhe</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2472-7349</orcidid><orcidid>https://orcid.org/0000-0001-9404-6429</orcidid><orcidid>https://orcid.org/0000-0001-6042-1171</orcidid></search><sort><creationdate>20230301</creationdate><title>Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis</title><author>Wei, Pengfei ; Gao, Dunfeng ; Liu, Tianfu ; Li, Hefei ; Sang, Jiaqi ; Wang, Chao ; Cai, Rui ; Wang, Guoxiong ; Bao, Xinhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-43b78ab85ce62341dc94962d50ada4d8cfb4029d08eacb6ccfaa4447986526263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/638/161/886</topic><topic>639/638/77/886</topic><topic>Acetic acid</topic><topic>Assembly</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemistry and Materials Science</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>Electrolytes</topic><topic>Ethylene</topic><topic>Fossil fuels</topic><topic>Hydrogenation</topic><topic>Laboratories</topic><topic>Materials Science</topic><topic>Membranes</topic><topic>Microenvironments</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Selectivity</topic><topic>Spectrum analysis</topic><topic>Switches</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Pengfei</creatorcontrib><creatorcontrib>Gao, Dunfeng</creatorcontrib><creatorcontrib>Liu, Tianfu</creatorcontrib><creatorcontrib>Li, Hefei</creatorcontrib><creatorcontrib>Sang, Jiaqi</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Cai, Rui</creatorcontrib><creatorcontrib>Wang, Guoxiong</creatorcontrib><creatorcontrib>Bao, Xinhe</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Pengfei</au><au>Gao, Dunfeng</au><au>Liu, Tianfu</au><au>Li, Hefei</au><au>Sang, Jiaqi</au><au>Wang, Chao</au><au>Cai, Rui</au><au>Wang, Guoxiong</au><au>Bao, Xinhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>18</volume><issue>3</issue><spage>299</spage><epage>306</epage><pages>299-306</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Tuning catalyst microenvironments by electrolytes and organic modifications is effective in improving CO
2
electrolysis performance. An alternative way is to use mixed CO/CO
2
feeds from incomplete industrial combustion of fossil fuels, but its effect on catalyst microenvironments has been poorly understood. Here we investigate CO/CO
2
co-electrolysis over CuO nanosheets in an alkaline membrane electrode assembly electrolyser. With increasing CO pressure in the feed, the major product gradually switches from ethylene to acetate, attributed to the increased CO coverage and local pH. Under optimized conditions, the Faradaic efficiency and partial current density of multicarbon products reach 90.0% and 3.1 A cm
−2
, corresponding to a carbon selectivity of 100.0% and yield of 75.0%, outperforming thermocatalytic CO hydrogenation. The scale-up demonstration using an electrolyser stack achieves the highest ethylene formation rate of 457.5 ml min
–1
at 150 A and acetate formation rate of 2.97 g min
–1
at 250 A.
Catalyst microenvironment induced by mixed CO/CO
2
feeds in an alkaline membrane assembly electrolyser determines the catalytic activity and product selectivity in CO
2
/CO electrolysis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41565-022-01286-y</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2472-7349</orcidid><orcidid>https://orcid.org/0000-0001-9404-6429</orcidid><orcidid>https://orcid.org/0000-0001-6042-1171</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2023-03, Vol.18 (3), p.299-306 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_proquest_miscellaneous_2765776693 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 639/638/161/886 639/638/77/886 Acetic acid Assembly Carbon Carbon dioxide Carbon monoxide Catalysts Catalytic activity Chemistry and Materials Science Electrodes Electrolysis Electrolytes Ethylene Fossil fuels Hydrogenation Laboratories Materials Science Membranes Microenvironments Morphology Nanotechnology Nanotechnology and Microengineering Selectivity Spectrum analysis Switches Transmission electron microscopy |
title | Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coverage-driven%20selectivity%20switch%20from%20ethylene%20to%20acetate%20in%20high-rate%20CO2/CO%20electrolysis&rft.jtitle=Nature%20nanotechnology&rft.au=Wei,%20Pengfei&rft.date=2023-03-01&rft.volume=18&rft.issue=3&rft.spage=299&rft.epage=306&rft.pages=299-306&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-022-01286-y&rft_dat=%3Cproquest_cross%3E2787389776%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787389776&rft_id=info:pmid/&rfr_iscdi=true |