Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis

Tuning catalyst microenvironments by electrolytes and organic modifications is effective in improving CO 2 electrolysis performance. An alternative way is to use mixed CO/CO 2 feeds from incomplete industrial combustion of fossil fuels, but its effect on catalyst microenvironments has been poorly un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2023-03, Vol.18 (3), p.299-306
Hauptverfasser: Wei, Pengfei, Gao, Dunfeng, Liu, Tianfu, Li, Hefei, Sang, Jiaqi, Wang, Chao, Cai, Rui, Wang, Guoxiong, Bao, Xinhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 306
container_issue 3
container_start_page 299
container_title Nature nanotechnology
container_volume 18
creator Wei, Pengfei
Gao, Dunfeng
Liu, Tianfu
Li, Hefei
Sang, Jiaqi
Wang, Chao
Cai, Rui
Wang, Guoxiong
Bao, Xinhe
description Tuning catalyst microenvironments by electrolytes and organic modifications is effective in improving CO 2 electrolysis performance. An alternative way is to use mixed CO/CO 2 feeds from incomplete industrial combustion of fossil fuels, but its effect on catalyst microenvironments has been poorly understood. Here we investigate CO/CO 2 co-electrolysis over CuO nanosheets in an alkaline membrane electrode assembly electrolyser. With increasing CO pressure in the feed, the major product gradually switches from ethylene to acetate, attributed to the increased CO coverage and local pH. Under optimized conditions, the Faradaic efficiency and partial current density of multicarbon products reach 90.0% and 3.1 A cm −2 , corresponding to a carbon selectivity of 100.0% and yield of 75.0%, outperforming thermocatalytic CO hydrogenation. The scale-up demonstration using an electrolyser stack achieves the highest ethylene formation rate of 457.5 ml min –1 at 150 A and acetate formation rate of 2.97 g min –1 at 250 A. Catalyst microenvironment induced by mixed CO/CO 2 feeds in an alkaline membrane assembly electrolyser determines the catalytic activity and product selectivity in CO 2 /CO electrolysis.
doi_str_mv 10.1038/s41565-022-01286-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2765776693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787389776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-43b78ab85ce62341dc94962d50ada4d8cfb4029d08eacb6ccfaa4447986526263</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhoMoWKt_wNOCFy9rN_uVzVGCX1DoRW_CstlM2i1pUne3lfx700YUPHiaGXjel-FJkuuU3KWEqVngqZACE0oxSamSuD9JJmnGFWYsF6c_u8rOk4sQ1oQImlM-Sd6Lbg_eLAFX3u2hRQEasNHtXexR-HTRrlDtuw2CuOobaAHFDhkL0URArkUrt1xhfziKBZ0VC3SM-67pgwuXyVltmgBX33OavD0-vBbPeL54einu59gyQSPmrMyUKZWwICnjaWVznktaCWIqwytl65ITmldEgbGltLY2hnOe5UoKKqlk0-R27N367mMHIeqNCxaaxrTQ7YKmmRRZJmXOBvTmD7rudr4dvhsolTGVD-BA0ZGyvgvBQ6233m2M73VK9EG4HoXrQbg-Ctf9EGJjKAxwuwT_W_1P6gu1toQr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787389776</pqid></control><display><type>article</type><title>Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wei, Pengfei ; Gao, Dunfeng ; Liu, Tianfu ; Li, Hefei ; Sang, Jiaqi ; Wang, Chao ; Cai, Rui ; Wang, Guoxiong ; Bao, Xinhe</creator><creatorcontrib>Wei, Pengfei ; Gao, Dunfeng ; Liu, Tianfu ; Li, Hefei ; Sang, Jiaqi ; Wang, Chao ; Cai, Rui ; Wang, Guoxiong ; Bao, Xinhe</creatorcontrib><description>Tuning catalyst microenvironments by electrolytes and organic modifications is effective in improving CO 2 electrolysis performance. An alternative way is to use mixed CO/CO 2 feeds from incomplete industrial combustion of fossil fuels, but its effect on catalyst microenvironments has been poorly understood. Here we investigate CO/CO 2 co-electrolysis over CuO nanosheets in an alkaline membrane electrode assembly electrolyser. With increasing CO pressure in the feed, the major product gradually switches from ethylene to acetate, attributed to the increased CO coverage and local pH. Under optimized conditions, the Faradaic efficiency and partial current density of multicarbon products reach 90.0% and 3.1 A cm −2 , corresponding to a carbon selectivity of 100.0% and yield of 75.0%, outperforming thermocatalytic CO hydrogenation. The scale-up demonstration using an electrolyser stack achieves the highest ethylene formation rate of 457.5 ml min –1 at 150 A and acetate formation rate of 2.97 g min –1 at 250 A. Catalyst microenvironment induced by mixed CO/CO 2 feeds in an alkaline membrane assembly electrolyser determines the catalytic activity and product selectivity in CO 2 /CO electrolysis.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-022-01286-y</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/161/886 ; 639/638/77/886 ; Acetic acid ; Assembly ; Carbon ; Carbon dioxide ; Carbon monoxide ; Catalysts ; Catalytic activity ; Chemistry and Materials Science ; Electrodes ; Electrolysis ; Electrolytes ; Ethylene ; Fossil fuels ; Hydrogenation ; Laboratories ; Materials Science ; Membranes ; Microenvironments ; Morphology ; Nanotechnology ; Nanotechnology and Microengineering ; Selectivity ; Spectrum analysis ; Switches ; Transmission electron microscopy</subject><ispartof>Nature nanotechnology, 2023-03, Vol.18 (3), p.299-306</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-43b78ab85ce62341dc94962d50ada4d8cfb4029d08eacb6ccfaa4447986526263</citedby><cites>FETCH-LOGICAL-c352t-43b78ab85ce62341dc94962d50ada4d8cfb4029d08eacb6ccfaa4447986526263</cites><orcidid>0000-0002-2472-7349 ; 0000-0001-9404-6429 ; 0000-0001-6042-1171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-022-01286-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-022-01286-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wei, Pengfei</creatorcontrib><creatorcontrib>Gao, Dunfeng</creatorcontrib><creatorcontrib>Liu, Tianfu</creatorcontrib><creatorcontrib>Li, Hefei</creatorcontrib><creatorcontrib>Sang, Jiaqi</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Cai, Rui</creatorcontrib><creatorcontrib>Wang, Guoxiong</creatorcontrib><creatorcontrib>Bao, Xinhe</creatorcontrib><title>Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><description>Tuning catalyst microenvironments by electrolytes and organic modifications is effective in improving CO 2 electrolysis performance. An alternative way is to use mixed CO/CO 2 feeds from incomplete industrial combustion of fossil fuels, but its effect on catalyst microenvironments has been poorly understood. Here we investigate CO/CO 2 co-electrolysis over CuO nanosheets in an alkaline membrane electrode assembly electrolyser. With increasing CO pressure in the feed, the major product gradually switches from ethylene to acetate, attributed to the increased CO coverage and local pH. Under optimized conditions, the Faradaic efficiency and partial current density of multicarbon products reach 90.0% and 3.1 A cm −2 , corresponding to a carbon selectivity of 100.0% and yield of 75.0%, outperforming thermocatalytic CO hydrogenation. The scale-up demonstration using an electrolyser stack achieves the highest ethylene formation rate of 457.5 ml min –1 at 150 A and acetate formation rate of 2.97 g min –1 at 250 A. Catalyst microenvironment induced by mixed CO/CO 2 feeds in an alkaline membrane assembly electrolyser determines the catalytic activity and product selectivity in CO 2 /CO electrolysis.</description><subject>639/638/161/886</subject><subject>639/638/77/886</subject><subject>Acetic acid</subject><subject>Assembly</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemistry and Materials Science</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>Electrolytes</subject><subject>Ethylene</subject><subject>Fossil fuels</subject><subject>Hydrogenation</subject><subject>Laboratories</subject><subject>Materials Science</subject><subject>Membranes</subject><subject>Microenvironments</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Selectivity</subject><subject>Spectrum analysis</subject><subject>Switches</subject><subject>Transmission electron microscopy</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1Lw0AQhoMoWKt_wNOCFy9rN_uVzVGCX1DoRW_CstlM2i1pUne3lfx700YUPHiaGXjel-FJkuuU3KWEqVngqZACE0oxSamSuD9JJmnGFWYsF6c_u8rOk4sQ1oQImlM-Sd6Lbg_eLAFX3u2hRQEasNHtXexR-HTRrlDtuw2CuOobaAHFDhkL0URArkUrt1xhfziKBZ0VC3SM-67pgwuXyVltmgBX33OavD0-vBbPeL54einu59gyQSPmrMyUKZWwICnjaWVznktaCWIqwytl65ITmldEgbGltLY2hnOe5UoKKqlk0-R27N367mMHIeqNCxaaxrTQ7YKmmRRZJmXOBvTmD7rudr4dvhsolTGVD-BA0ZGyvgvBQ6233m2M73VK9EG4HoXrQbg-Ctf9EGJjKAxwuwT_W_1P6gu1toQr</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Wei, Pengfei</creator><creator>Gao, Dunfeng</creator><creator>Liu, Tianfu</creator><creator>Li, Hefei</creator><creator>Sang, Jiaqi</creator><creator>Wang, Chao</creator><creator>Cai, Rui</creator><creator>Wang, Guoxiong</creator><creator>Bao, Xinhe</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2472-7349</orcidid><orcidid>https://orcid.org/0000-0001-9404-6429</orcidid><orcidid>https://orcid.org/0000-0001-6042-1171</orcidid></search><sort><creationdate>20230301</creationdate><title>Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis</title><author>Wei, Pengfei ; Gao, Dunfeng ; Liu, Tianfu ; Li, Hefei ; Sang, Jiaqi ; Wang, Chao ; Cai, Rui ; Wang, Guoxiong ; Bao, Xinhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-43b78ab85ce62341dc94962d50ada4d8cfb4029d08eacb6ccfaa4447986526263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/638/161/886</topic><topic>639/638/77/886</topic><topic>Acetic acid</topic><topic>Assembly</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemistry and Materials Science</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>Electrolytes</topic><topic>Ethylene</topic><topic>Fossil fuels</topic><topic>Hydrogenation</topic><topic>Laboratories</topic><topic>Materials Science</topic><topic>Membranes</topic><topic>Microenvironments</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Selectivity</topic><topic>Spectrum analysis</topic><topic>Switches</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Pengfei</creatorcontrib><creatorcontrib>Gao, Dunfeng</creatorcontrib><creatorcontrib>Liu, Tianfu</creatorcontrib><creatorcontrib>Li, Hefei</creatorcontrib><creatorcontrib>Sang, Jiaqi</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Cai, Rui</creatorcontrib><creatorcontrib>Wang, Guoxiong</creatorcontrib><creatorcontrib>Bao, Xinhe</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Pengfei</au><au>Gao, Dunfeng</au><au>Liu, Tianfu</au><au>Li, Hefei</au><au>Sang, Jiaqi</au><au>Wang, Chao</au><au>Cai, Rui</au><au>Wang, Guoxiong</au><au>Bao, Xinhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>18</volume><issue>3</issue><spage>299</spage><epage>306</epage><pages>299-306</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Tuning catalyst microenvironments by electrolytes and organic modifications is effective in improving CO 2 electrolysis performance. An alternative way is to use mixed CO/CO 2 feeds from incomplete industrial combustion of fossil fuels, but its effect on catalyst microenvironments has been poorly understood. Here we investigate CO/CO 2 co-electrolysis over CuO nanosheets in an alkaline membrane electrode assembly electrolyser. With increasing CO pressure in the feed, the major product gradually switches from ethylene to acetate, attributed to the increased CO coverage and local pH. Under optimized conditions, the Faradaic efficiency and partial current density of multicarbon products reach 90.0% and 3.1 A cm −2 , corresponding to a carbon selectivity of 100.0% and yield of 75.0%, outperforming thermocatalytic CO hydrogenation. The scale-up demonstration using an electrolyser stack achieves the highest ethylene formation rate of 457.5 ml min –1 at 150 A and acetate formation rate of 2.97 g min –1 at 250 A. Catalyst microenvironment induced by mixed CO/CO 2 feeds in an alkaline membrane assembly electrolyser determines the catalytic activity and product selectivity in CO 2 /CO electrolysis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41565-022-01286-y</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2472-7349</orcidid><orcidid>https://orcid.org/0000-0001-9404-6429</orcidid><orcidid>https://orcid.org/0000-0001-6042-1171</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2023-03, Vol.18 (3), p.299-306
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_miscellaneous_2765776693
source Nature; SpringerLink Journals - AutoHoldings
subjects 639/638/161/886
639/638/77/886
Acetic acid
Assembly
Carbon
Carbon dioxide
Carbon monoxide
Catalysts
Catalytic activity
Chemistry and Materials Science
Electrodes
Electrolysis
Electrolytes
Ethylene
Fossil fuels
Hydrogenation
Laboratories
Materials Science
Membranes
Microenvironments
Morphology
Nanotechnology
Nanotechnology and Microengineering
Selectivity
Spectrum analysis
Switches
Transmission electron microscopy
title Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coverage-driven%20selectivity%20switch%20from%20ethylene%20to%20acetate%20in%20high-rate%20CO2/CO%20electrolysis&rft.jtitle=Nature%20nanotechnology&rft.au=Wei,%20Pengfei&rft.date=2023-03-01&rft.volume=18&rft.issue=3&rft.spage=299&rft.epage=306&rft.pages=299-306&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-022-01286-y&rft_dat=%3Cproquest_cross%3E2787389776%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787389776&rft_id=info:pmid/&rfr_iscdi=true