Technological Pathways to Produce Compressed and Highly Pure Hydrogen from Solar Power
Hydrogen (H2) produced from renewables will have a growing impact on the global energy dynamics towards sustainable and carbon‐neutral standards. The share of green H2 is still too low to meet the net‐zero target, while the demand for high‐quality hydrogen continues to rise. These factors amplify th...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2023-08, Vol.62 (32), p.e202218850-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 32 |
container_start_page | e202218850 |
container_title | Angewandte Chemie International Edition |
container_volume | 62 |
creator | Ivanova, Mariya E. Peters, Ralf Müller, Martin Haas, Stefan Seidler, Martin Florian Mutschke, Gerd Eckert, Kerstin Röse, Philipp Calnan, Sonya Bagacki, Rory Schlatmann, Rutger Grosselindemann, Cedric Schäfer, Laura‐Alena Menzler, Norbert H. Weber, André Krol, Roel Liang, Feng Abdi, Fatwa F. Brendelberger, Stefan Neumann, Nicole Grobbel, Johannes Roeb, Martin Sattler, Christian Duran, Ines Dietrich, Benjamin Hofberger, M. E. Christoph Stoppel, Leonid Uhlenbruck, Neele Wetzel, Thomas Rauner, David Hecimovic, Ante Fantz, Ursel Kulyk, Nadiia Harting, Jens Guillon, Olivier |
description | Hydrogen (H2) produced from renewables will have a growing impact on the global energy dynamics towards sustainable and carbon‐neutral standards. The share of green H2 is still too low to meet the net‐zero target, while the demand for high‐quality hydrogen continues to rise. These factors amplify the need for economically viable H2 generation technologies. The present article aims at evaluating the existing technologies for high‐quality H2 production based on solar energy. Technologies such as water electrolysis, photoelectrochemical and solar thermochemical water splitting, liquid metal reactors and plasma conversion utilize solar power directly or indirectly (as carbon‐neutral electrons) and are reviewed from the perspective of their current development level, technical limitations and future potential.
This Review gives an overview of the technological pathways for direct and indirect production of H2 from solar power within the frame of the Innovation Pool project “ Solar H2: Highly Pure and Compressed ”. Technologies such as water electrolysis, photoelectrochemical and thermochemical water splitting, liquid metal and plasma reactors are described in terms of their principle of operation and specifics regarding to the quality (purity, pressure) of produced H2. |
doi_str_mv | 10.1002/anie.202218850 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2765775914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765775914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4130-8a0d12b6c5e62e4e1282a0c4571b9a9d75373565b255ee52b4f582781473ecbd3</originalsourceid><addsrcrecordid>eNqFkEtLw0AQgBdRfFSvHmXBi5fUfWY3RynVCqIFH9dls5m2KUm27jaU_HtTqhW8eJo5fPMxfAhdUjKkhLBb25QwZIQxqrUkB-iUSkYTrhQ_7HfBeaK0pCfoLMZlz2tN0mN0wtOUKy70Kfp4A7dofOXnpbMVntr1YmO7iNceT4MvWgd45OtVgBihwLYp8KScL6oOT9sAeNIVwc-hwbPga_zqKxvw1G8gnKOjma0iXHzPAXq_H7-NJsnTy8Pj6O4pcYJykmhLCsry1ElIGQigTDNLnJCK5pnNCiX7N2UqcyYlgGS5mEnNlKZCcXB5wQfoZuddBf_ZQlybuowOqso24NtomEqlUjLrSwzQ9R906dvQ9N8ZpoUQGUsz3lPDHeWCjzHAzKxCWdvQGUrMtrjZFjf74v3B1be2zWso9vhP4h7IdsCmrKD7R2funh_Hv_IvnveLoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844492693</pqid></control><display><type>article</type><title>Technological Pathways to Produce Compressed and Highly Pure Hydrogen from Solar Power</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ivanova, Mariya E. ; Peters, Ralf ; Müller, Martin ; Haas, Stefan ; Seidler, Martin Florian ; Mutschke, Gerd ; Eckert, Kerstin ; Röse, Philipp ; Calnan, Sonya ; Bagacki, Rory ; Schlatmann, Rutger ; Grosselindemann, Cedric ; Schäfer, Laura‐Alena ; Menzler, Norbert H. ; Weber, André ; Krol, Roel ; Liang, Feng ; Abdi, Fatwa F. ; Brendelberger, Stefan ; Neumann, Nicole ; Grobbel, Johannes ; Roeb, Martin ; Sattler, Christian ; Duran, Ines ; Dietrich, Benjamin ; Hofberger, M. E. Christoph ; Stoppel, Leonid ; Uhlenbruck, Neele ; Wetzel, Thomas ; Rauner, David ; Hecimovic, Ante ; Fantz, Ursel ; Kulyk, Nadiia ; Harting, Jens ; Guillon, Olivier</creator><creatorcontrib>Ivanova, Mariya E. ; Peters, Ralf ; Müller, Martin ; Haas, Stefan ; Seidler, Martin Florian ; Mutschke, Gerd ; Eckert, Kerstin ; Röse, Philipp ; Calnan, Sonya ; Bagacki, Rory ; Schlatmann, Rutger ; Grosselindemann, Cedric ; Schäfer, Laura‐Alena ; Menzler, Norbert H. ; Weber, André ; Krol, Roel ; Liang, Feng ; Abdi, Fatwa F. ; Brendelberger, Stefan ; Neumann, Nicole ; Grobbel, Johannes ; Roeb, Martin ; Sattler, Christian ; Duran, Ines ; Dietrich, Benjamin ; Hofberger, M. E. Christoph ; Stoppel, Leonid ; Uhlenbruck, Neele ; Wetzel, Thomas ; Rauner, David ; Hecimovic, Ante ; Fantz, Ursel ; Kulyk, Nadiia ; Harting, Jens ; Guillon, Olivier</creatorcontrib><description>Hydrogen (H2) produced from renewables will have a growing impact on the global energy dynamics towards sustainable and carbon‐neutral standards. The share of green H2 is still too low to meet the net‐zero target, while the demand for high‐quality hydrogen continues to rise. These factors amplify the need for economically viable H2 generation technologies. The present article aims at evaluating the existing technologies for high‐quality H2 production based on solar energy. Technologies such as water electrolysis, photoelectrochemical and solar thermochemical water splitting, liquid metal reactors and plasma conversion utilize solar power directly or indirectly (as carbon‐neutral electrons) and are reviewed from the perspective of their current development level, technical limitations and future potential.
This Review gives an overview of the technological pathways for direct and indirect production of H2 from solar power within the frame of the Innovation Pool project “ Solar H2: Highly Pure and Compressed ”. Technologies such as water electrolysis, photoelectrochemical and thermochemical water splitting, liquid metal and plasma reactors are described in terms of their principle of operation and specifics regarding to the quality (purity, pressure) of produced H2.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202218850</identifier><identifier>PMID: 36637348</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carbon ; Electrolysis ; H2 Generation ; H2 Purification and Compression ; Hydrogen ; Hydrogen production ; Liquid metals ; Methane Pyrolysis ; Solar energy ; Solar power ; Water Electrolysis ; Water Splitting</subject><ispartof>Angewandte Chemie International Edition, 2023-08, Vol.62 (32), p.e202218850-n/a</ispartof><rights>2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4130-8a0d12b6c5e62e4e1282a0c4571b9a9d75373565b255ee52b4f582781473ecbd3</citedby><cites>FETCH-LOGICAL-c4130-8a0d12b6c5e62e4e1282a0c4571b9a9d75373565b255ee52b4f582781473ecbd3</cites><orcidid>0000-0002-4314-1124 ; 0000-0002-2672-6657 ; 0009-0001-8043-6028 ; 0000-0002-9671-8628 ; 0000-0002-8286-7075 ; 0000-0002-1955-6485 ; 0000-0003-1692-9909 ; 0000-0002-9942-5484 ; 0000-0002-7918-7474 ; 0009-0001-0240-3853 ; 0000-0002-2521-4764 ; 0000-0001-5631-0620 ; 0000-0002-9813-5135 ; 0000-0003-2239-3477 ; 0000-0002-7995-7563 ; 0000-0001-7572-9611 ; 0000-0003-2460-6907 ; 0000-0002-7521-8237 ; 0000-0002-5951-9435 ; 0000-0003-4831-5725 ; 0000-0002-9965-843X ; 0000-0003-4399-399X ; 0000-0002-3917-234X ; 0000-0002-8739-3489 ; 0000-0002-7131-8230 ; 0009-0003-7319-3085 ; 0000-0001-7091-0980 ; 0000-0002-3281-8507 ; 0000-0003-1579-2875 ; 0000-0002-9200-6623 ; 0000-0003-1744-3732 ; 0000-0001-6591-7133 ; 0000-0002-8001-3746</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202218850$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202218850$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36637348$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ivanova, Mariya E.</creatorcontrib><creatorcontrib>Peters, Ralf</creatorcontrib><creatorcontrib>Müller, Martin</creatorcontrib><creatorcontrib>Haas, Stefan</creatorcontrib><creatorcontrib>Seidler, Martin Florian</creatorcontrib><creatorcontrib>Mutschke, Gerd</creatorcontrib><creatorcontrib>Eckert, Kerstin</creatorcontrib><creatorcontrib>Röse, Philipp</creatorcontrib><creatorcontrib>Calnan, Sonya</creatorcontrib><creatorcontrib>Bagacki, Rory</creatorcontrib><creatorcontrib>Schlatmann, Rutger</creatorcontrib><creatorcontrib>Grosselindemann, Cedric</creatorcontrib><creatorcontrib>Schäfer, Laura‐Alena</creatorcontrib><creatorcontrib>Menzler, Norbert H.</creatorcontrib><creatorcontrib>Weber, André</creatorcontrib><creatorcontrib>Krol, Roel</creatorcontrib><creatorcontrib>Liang, Feng</creatorcontrib><creatorcontrib>Abdi, Fatwa F.</creatorcontrib><creatorcontrib>Brendelberger, Stefan</creatorcontrib><creatorcontrib>Neumann, Nicole</creatorcontrib><creatorcontrib>Grobbel, Johannes</creatorcontrib><creatorcontrib>Roeb, Martin</creatorcontrib><creatorcontrib>Sattler, Christian</creatorcontrib><creatorcontrib>Duran, Ines</creatorcontrib><creatorcontrib>Dietrich, Benjamin</creatorcontrib><creatorcontrib>Hofberger, M. E. Christoph</creatorcontrib><creatorcontrib>Stoppel, Leonid</creatorcontrib><creatorcontrib>Uhlenbruck, Neele</creatorcontrib><creatorcontrib>Wetzel, Thomas</creatorcontrib><creatorcontrib>Rauner, David</creatorcontrib><creatorcontrib>Hecimovic, Ante</creatorcontrib><creatorcontrib>Fantz, Ursel</creatorcontrib><creatorcontrib>Kulyk, Nadiia</creatorcontrib><creatorcontrib>Harting, Jens</creatorcontrib><creatorcontrib>Guillon, Olivier</creatorcontrib><title>Technological Pathways to Produce Compressed and Highly Pure Hydrogen from Solar Power</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Hydrogen (H2) produced from renewables will have a growing impact on the global energy dynamics towards sustainable and carbon‐neutral standards. The share of green H2 is still too low to meet the net‐zero target, while the demand for high‐quality hydrogen continues to rise. These factors amplify the need for economically viable H2 generation technologies. The present article aims at evaluating the existing technologies for high‐quality H2 production based on solar energy. Technologies such as water electrolysis, photoelectrochemical and solar thermochemical water splitting, liquid metal reactors and plasma conversion utilize solar power directly or indirectly (as carbon‐neutral electrons) and are reviewed from the perspective of their current development level, technical limitations and future potential.
This Review gives an overview of the technological pathways for direct and indirect production of H2 from solar power within the frame of the Innovation Pool project “ Solar H2: Highly Pure and Compressed ”. Technologies such as water electrolysis, photoelectrochemical and thermochemical water splitting, liquid metal and plasma reactors are described in terms of their principle of operation and specifics regarding to the quality (purity, pressure) of produced H2.</description><subject>Carbon</subject><subject>Electrolysis</subject><subject>H2 Generation</subject><subject>H2 Purification and Compression</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Liquid metals</subject><subject>Methane Pyrolysis</subject><subject>Solar energy</subject><subject>Solar power</subject><subject>Water Electrolysis</subject><subject>Water Splitting</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkEtLw0AQgBdRfFSvHmXBi5fUfWY3RynVCqIFH9dls5m2KUm27jaU_HtTqhW8eJo5fPMxfAhdUjKkhLBb25QwZIQxqrUkB-iUSkYTrhQ_7HfBeaK0pCfoLMZlz2tN0mN0wtOUKy70Kfp4A7dofOXnpbMVntr1YmO7iNceT4MvWgd45OtVgBihwLYp8KScL6oOT9sAeNIVwc-hwbPga_zqKxvw1G8gnKOjma0iXHzPAXq_H7-NJsnTy8Pj6O4pcYJykmhLCsry1ElIGQigTDNLnJCK5pnNCiX7N2UqcyYlgGS5mEnNlKZCcXB5wQfoZuddBf_ZQlybuowOqso24NtomEqlUjLrSwzQ9R906dvQ9N8ZpoUQGUsz3lPDHeWCjzHAzKxCWdvQGUrMtrjZFjf74v3B1be2zWso9vhP4h7IdsCmrKD7R2funh_Hv_IvnveLoA</recordid><startdate>20230807</startdate><enddate>20230807</enddate><creator>Ivanova, Mariya E.</creator><creator>Peters, Ralf</creator><creator>Müller, Martin</creator><creator>Haas, Stefan</creator><creator>Seidler, Martin Florian</creator><creator>Mutschke, Gerd</creator><creator>Eckert, Kerstin</creator><creator>Röse, Philipp</creator><creator>Calnan, Sonya</creator><creator>Bagacki, Rory</creator><creator>Schlatmann, Rutger</creator><creator>Grosselindemann, Cedric</creator><creator>Schäfer, Laura‐Alena</creator><creator>Menzler, Norbert H.</creator><creator>Weber, André</creator><creator>Krol, Roel</creator><creator>Liang, Feng</creator><creator>Abdi, Fatwa F.</creator><creator>Brendelberger, Stefan</creator><creator>Neumann, Nicole</creator><creator>Grobbel, Johannes</creator><creator>Roeb, Martin</creator><creator>Sattler, Christian</creator><creator>Duran, Ines</creator><creator>Dietrich, Benjamin</creator><creator>Hofberger, M. E. Christoph</creator><creator>Stoppel, Leonid</creator><creator>Uhlenbruck, Neele</creator><creator>Wetzel, Thomas</creator><creator>Rauner, David</creator><creator>Hecimovic, Ante</creator><creator>Fantz, Ursel</creator><creator>Kulyk, Nadiia</creator><creator>Harting, Jens</creator><creator>Guillon, Olivier</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4314-1124</orcidid><orcidid>https://orcid.org/0000-0002-2672-6657</orcidid><orcidid>https://orcid.org/0009-0001-8043-6028</orcidid><orcidid>https://orcid.org/0000-0002-9671-8628</orcidid><orcidid>https://orcid.org/0000-0002-8286-7075</orcidid><orcidid>https://orcid.org/0000-0002-1955-6485</orcidid><orcidid>https://orcid.org/0000-0003-1692-9909</orcidid><orcidid>https://orcid.org/0000-0002-9942-5484</orcidid><orcidid>https://orcid.org/0000-0002-7918-7474</orcidid><orcidid>https://orcid.org/0009-0001-0240-3853</orcidid><orcidid>https://orcid.org/0000-0002-2521-4764</orcidid><orcidid>https://orcid.org/0000-0001-5631-0620</orcidid><orcidid>https://orcid.org/0000-0002-9813-5135</orcidid><orcidid>https://orcid.org/0000-0003-2239-3477</orcidid><orcidid>https://orcid.org/0000-0002-7995-7563</orcidid><orcidid>https://orcid.org/0000-0001-7572-9611</orcidid><orcidid>https://orcid.org/0000-0003-2460-6907</orcidid><orcidid>https://orcid.org/0000-0002-7521-8237</orcidid><orcidid>https://orcid.org/0000-0002-5951-9435</orcidid><orcidid>https://orcid.org/0000-0003-4831-5725</orcidid><orcidid>https://orcid.org/0000-0002-9965-843X</orcidid><orcidid>https://orcid.org/0000-0003-4399-399X</orcidid><orcidid>https://orcid.org/0000-0002-3917-234X</orcidid><orcidid>https://orcid.org/0000-0002-8739-3489</orcidid><orcidid>https://orcid.org/0000-0002-7131-8230</orcidid><orcidid>https://orcid.org/0009-0003-7319-3085</orcidid><orcidid>https://orcid.org/0000-0001-7091-0980</orcidid><orcidid>https://orcid.org/0000-0002-3281-8507</orcidid><orcidid>https://orcid.org/0000-0003-1579-2875</orcidid><orcidid>https://orcid.org/0000-0002-9200-6623</orcidid><orcidid>https://orcid.org/0000-0003-1744-3732</orcidid><orcidid>https://orcid.org/0000-0001-6591-7133</orcidid><orcidid>https://orcid.org/0000-0002-8001-3746</orcidid></search><sort><creationdate>20230807</creationdate><title>Technological Pathways to Produce Compressed and Highly Pure Hydrogen from Solar Power</title><author>Ivanova, Mariya E. ; Peters, Ralf ; Müller, Martin ; Haas, Stefan ; Seidler, Martin Florian ; Mutschke, Gerd ; Eckert, Kerstin ; Röse, Philipp ; Calnan, Sonya ; Bagacki, Rory ; Schlatmann, Rutger ; Grosselindemann, Cedric ; Schäfer, Laura‐Alena ; Menzler, Norbert H. ; Weber, André ; Krol, Roel ; Liang, Feng ; Abdi, Fatwa F. ; Brendelberger, Stefan ; Neumann, Nicole ; Grobbel, Johannes ; Roeb, Martin ; Sattler, Christian ; Duran, Ines ; Dietrich, Benjamin ; Hofberger, M. E. Christoph ; Stoppel, Leonid ; Uhlenbruck, Neele ; Wetzel, Thomas ; Rauner, David ; Hecimovic, Ante ; Fantz, Ursel ; Kulyk, Nadiia ; Harting, Jens ; Guillon, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4130-8a0d12b6c5e62e4e1282a0c4571b9a9d75373565b255ee52b4f582781473ecbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon</topic><topic>Electrolysis</topic><topic>H2 Generation</topic><topic>H2 Purification and Compression</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Liquid metals</topic><topic>Methane Pyrolysis</topic><topic>Solar energy</topic><topic>Solar power</topic><topic>Water Electrolysis</topic><topic>Water Splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanova, Mariya E.</creatorcontrib><creatorcontrib>Peters, Ralf</creatorcontrib><creatorcontrib>Müller, Martin</creatorcontrib><creatorcontrib>Haas, Stefan</creatorcontrib><creatorcontrib>Seidler, Martin Florian</creatorcontrib><creatorcontrib>Mutschke, Gerd</creatorcontrib><creatorcontrib>Eckert, Kerstin</creatorcontrib><creatorcontrib>Röse, Philipp</creatorcontrib><creatorcontrib>Calnan, Sonya</creatorcontrib><creatorcontrib>Bagacki, Rory</creatorcontrib><creatorcontrib>Schlatmann, Rutger</creatorcontrib><creatorcontrib>Grosselindemann, Cedric</creatorcontrib><creatorcontrib>Schäfer, Laura‐Alena</creatorcontrib><creatorcontrib>Menzler, Norbert H.</creatorcontrib><creatorcontrib>Weber, André</creatorcontrib><creatorcontrib>Krol, Roel</creatorcontrib><creatorcontrib>Liang, Feng</creatorcontrib><creatorcontrib>Abdi, Fatwa F.</creatorcontrib><creatorcontrib>Brendelberger, Stefan</creatorcontrib><creatorcontrib>Neumann, Nicole</creatorcontrib><creatorcontrib>Grobbel, Johannes</creatorcontrib><creatorcontrib>Roeb, Martin</creatorcontrib><creatorcontrib>Sattler, Christian</creatorcontrib><creatorcontrib>Duran, Ines</creatorcontrib><creatorcontrib>Dietrich, Benjamin</creatorcontrib><creatorcontrib>Hofberger, M. E. Christoph</creatorcontrib><creatorcontrib>Stoppel, Leonid</creatorcontrib><creatorcontrib>Uhlenbruck, Neele</creatorcontrib><creatorcontrib>Wetzel, Thomas</creatorcontrib><creatorcontrib>Rauner, David</creatorcontrib><creatorcontrib>Hecimovic, Ante</creatorcontrib><creatorcontrib>Fantz, Ursel</creatorcontrib><creatorcontrib>Kulyk, Nadiia</creatorcontrib><creatorcontrib>Harting, Jens</creatorcontrib><creatorcontrib>Guillon, Olivier</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanova, Mariya E.</au><au>Peters, Ralf</au><au>Müller, Martin</au><au>Haas, Stefan</au><au>Seidler, Martin Florian</au><au>Mutschke, Gerd</au><au>Eckert, Kerstin</au><au>Röse, Philipp</au><au>Calnan, Sonya</au><au>Bagacki, Rory</au><au>Schlatmann, Rutger</au><au>Grosselindemann, Cedric</au><au>Schäfer, Laura‐Alena</au><au>Menzler, Norbert H.</au><au>Weber, André</au><au>Krol, Roel</au><au>Liang, Feng</au><au>Abdi, Fatwa F.</au><au>Brendelberger, Stefan</au><au>Neumann, Nicole</au><au>Grobbel, Johannes</au><au>Roeb, Martin</au><au>Sattler, Christian</au><au>Duran, Ines</au><au>Dietrich, Benjamin</au><au>Hofberger, M. E. Christoph</au><au>Stoppel, Leonid</au><au>Uhlenbruck, Neele</au><au>Wetzel, Thomas</au><au>Rauner, David</au><au>Hecimovic, Ante</au><au>Fantz, Ursel</au><au>Kulyk, Nadiia</au><au>Harting, Jens</au><au>Guillon, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Technological Pathways to Produce Compressed and Highly Pure Hydrogen from Solar Power</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2023-08-07</date><risdate>2023</risdate><volume>62</volume><issue>32</issue><spage>e202218850</spage><epage>n/a</epage><pages>e202218850-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Hydrogen (H2) produced from renewables will have a growing impact on the global energy dynamics towards sustainable and carbon‐neutral standards. The share of green H2 is still too low to meet the net‐zero target, while the demand for high‐quality hydrogen continues to rise. These factors amplify the need for economically viable H2 generation technologies. The present article aims at evaluating the existing technologies for high‐quality H2 production based on solar energy. Technologies such as water electrolysis, photoelectrochemical and solar thermochemical water splitting, liquid metal reactors and plasma conversion utilize solar power directly or indirectly (as carbon‐neutral electrons) and are reviewed from the perspective of their current development level, technical limitations and future potential.
This Review gives an overview of the technological pathways for direct and indirect production of H2 from solar power within the frame of the Innovation Pool project “ Solar H2: Highly Pure and Compressed ”. Technologies such as water electrolysis, photoelectrochemical and thermochemical water splitting, liquid metal and plasma reactors are described in terms of their principle of operation and specifics regarding to the quality (purity, pressure) of produced H2.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36637348</pmid><doi>10.1002/anie.202218850</doi><tpages>25</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-4314-1124</orcidid><orcidid>https://orcid.org/0000-0002-2672-6657</orcidid><orcidid>https://orcid.org/0009-0001-8043-6028</orcidid><orcidid>https://orcid.org/0000-0002-9671-8628</orcidid><orcidid>https://orcid.org/0000-0002-8286-7075</orcidid><orcidid>https://orcid.org/0000-0002-1955-6485</orcidid><orcidid>https://orcid.org/0000-0003-1692-9909</orcidid><orcidid>https://orcid.org/0000-0002-9942-5484</orcidid><orcidid>https://orcid.org/0000-0002-7918-7474</orcidid><orcidid>https://orcid.org/0009-0001-0240-3853</orcidid><orcidid>https://orcid.org/0000-0002-2521-4764</orcidid><orcidid>https://orcid.org/0000-0001-5631-0620</orcidid><orcidid>https://orcid.org/0000-0002-9813-5135</orcidid><orcidid>https://orcid.org/0000-0003-2239-3477</orcidid><orcidid>https://orcid.org/0000-0002-7995-7563</orcidid><orcidid>https://orcid.org/0000-0001-7572-9611</orcidid><orcidid>https://orcid.org/0000-0003-2460-6907</orcidid><orcidid>https://orcid.org/0000-0002-7521-8237</orcidid><orcidid>https://orcid.org/0000-0002-5951-9435</orcidid><orcidid>https://orcid.org/0000-0003-4831-5725</orcidid><orcidid>https://orcid.org/0000-0002-9965-843X</orcidid><orcidid>https://orcid.org/0000-0003-4399-399X</orcidid><orcidid>https://orcid.org/0000-0002-3917-234X</orcidid><orcidid>https://orcid.org/0000-0002-8739-3489</orcidid><orcidid>https://orcid.org/0000-0002-7131-8230</orcidid><orcidid>https://orcid.org/0009-0003-7319-3085</orcidid><orcidid>https://orcid.org/0000-0001-7091-0980</orcidid><orcidid>https://orcid.org/0000-0002-3281-8507</orcidid><orcidid>https://orcid.org/0000-0003-1579-2875</orcidid><orcidid>https://orcid.org/0000-0002-9200-6623</orcidid><orcidid>https://orcid.org/0000-0003-1744-3732</orcidid><orcidid>https://orcid.org/0000-0001-6591-7133</orcidid><orcidid>https://orcid.org/0000-0002-8001-3746</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2023-08, Vol.62 (32), p.e202218850-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2765775914 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Carbon Electrolysis H2 Generation H2 Purification and Compression Hydrogen Hydrogen production Liquid metals Methane Pyrolysis Solar energy Solar power Water Electrolysis Water Splitting |
title | Technological Pathways to Produce Compressed and Highly Pure Hydrogen from Solar Power |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A19%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Technological%20Pathways%20to%20Produce%20Compressed%20and%20Highly%20Pure%20Hydrogen%20from%20Solar%20Power&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Ivanova,%20Mariya%20E.&rft.date=2023-08-07&rft.volume=62&rft.issue=32&rft.spage=e202218850&rft.epage=n/a&rft.pages=e202218850-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202218850&rft_dat=%3Cproquest_cross%3E2765775914%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844492693&rft_id=info:pmid/36637348&rfr_iscdi=true |