CD3 Target Affinity Chromatography Mass Spectrometry as a New Tool for Function–Structure Characterization of T‑Cell Engaging Bispecific Antibody Proteoforms and Product-Related Variants
T-cell engaging bispecific antibodies (TCBs) targeting CD3 and tumor-specific antigens are very promising therapeutic modalities. Since CD3 binding is crucial for the potency of TCBs, understanding the functional impact of CD3 antigen-binding fragment modifications is of utmost importance for defini...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2023-01, Vol.95 (4), p.2260-2268 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2268 |
---|---|
container_issue | 4 |
container_start_page | 2260 |
container_title | Analytical chemistry (Washington) |
container_volume | 95 |
creator | Lippold, Steffen Hook, Michaela Spick, Christian Knaupp, Alexander Whang, Kevin Ruperti, Fabian Cadang, Lance Andersen, Nisana Vogt, Annette Grote, Michael Reusch, Dietmar Haberger, Markus Yang, Feng Schlothauer, Tilman |
description | T-cell engaging bispecific antibodies (TCBs) targeting CD3 and tumor-specific antigens are very promising therapeutic modalities. Since CD3 binding is crucial for the potency of TCBs, understanding the functional impact of CD3 antigen-binding fragment modifications is of utmost importance for defining critical quality attributes (CQA). The current CQA assessment strategy requires the integration of structure-based physicochemical separation and functional cell-based potency assays. However, this strategy is tedious, and coexisting proteoforms with potentially different functionalities may not be individually assessed. This increases the degree of ambiguities for defining meaningful CQAs, particularly for complex bispecific antibody formats such as TCBs. Here, we report for the first time a proof-of-concept study to separate and identify critically modified proteoforms of TCBs using functional CD3 target affinity chromatography (AC) coupled with online mass spectrometry (MS). Our method enabled functional distinction of relevant deamidated and glycosylated proteoforms and the simultaneous assessment of product-related variants such as TCB mispairings. For example, CD3 AC-MS allowed us to separate TCB mispairings with increased CD3 binding (i.e., knob–knob homodimers) within the bound fraction. The functional separation of proteoforms was validated using an established workflow for CQA identification based on thoroughly characterized ion-exchange fractions of a 2+1 TCB. In addition, the new method facilitated the criticality assessment of post-translational modifications in stress studies and structural variants in early stage clone selection. CD3 AC-MS has high impact for streamlining the integration of functional and structural characterizations of the large landscape of therapeutic CD3 targeting TCBs from early stage research to late stage characterization. |
doi_str_mv | 10.1021/acs.analchem.2c03827 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2765774399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765774399</sourcerecordid><originalsourceid>FETCH-LOGICAL-a306t-b4a1e43c707aafd26b9bd16973d8ed8b3e85cec39dbfb8fbcd392fa898be59bf3</originalsourceid><addsrcrecordid>eNp9kc1u1DAURiMEokPhDRCyxIZNBjueJM5yGFpAKj-iA9vo2r6ecZXEU9sRCqu-AuJ9eJg-CR7NtAsWrCzb5ztXV1-WPWd0zmjBXoMKcxigU1vs54WiXBT1g2zGyoLmlRDFw2xGKeV5UVN6kj0J4YpSxiirHmcnvKq4YKycZX9WbzlZg99gJEtj7GDjRFZb73qIbuNht53IRwiBXO5QxfSM0U8EAgHyCX-QtXMdMc6T83FQ0brh9ub3ZfSjiqPH5AEPKqK3P2H_SZwh69ubXyvsOnI2bGBjhw15Y0NyW2MVWQ7RSqcn8sW7iC6J-zRp0Pu7TtL8K3YQUZPv4C0MMTzNHhnoAj47nqfZt_Oz9ep9fvH53YfV8iIHTquYywUwXHBV0xrA6KKSjdSsamquBWohOYpSoeKNlkYKI5XmTWFANEJi2UjDT7NXB-_Ou-sRQ2x7G1RaAwZ0Y2iLuirresGbJqEv_0Gv3OhTUXuqZlzwuigTtThQyrsQPJp2520PfmoZbff9tqnf9q7f9thvir04ykfZo74P3RWaAHoA9vH7wf91_gWcYruf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771383725</pqid></control><display><type>article</type><title>CD3 Target Affinity Chromatography Mass Spectrometry as a New Tool for Function–Structure Characterization of T‑Cell Engaging Bispecific Antibody Proteoforms and Product-Related Variants</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Lippold, Steffen ; Hook, Michaela ; Spick, Christian ; Knaupp, Alexander ; Whang, Kevin ; Ruperti, Fabian ; Cadang, Lance ; Andersen, Nisana ; Vogt, Annette ; Grote, Michael ; Reusch, Dietmar ; Haberger, Markus ; Yang, Feng ; Schlothauer, Tilman</creator><creatorcontrib>Lippold, Steffen ; Hook, Michaela ; Spick, Christian ; Knaupp, Alexander ; Whang, Kevin ; Ruperti, Fabian ; Cadang, Lance ; Andersen, Nisana ; Vogt, Annette ; Grote, Michael ; Reusch, Dietmar ; Haberger, Markus ; Yang, Feng ; Schlothauer, Tilman</creatorcontrib><description>T-cell engaging bispecific antibodies (TCBs) targeting CD3 and tumor-specific antigens are very promising therapeutic modalities. Since CD3 binding is crucial for the potency of TCBs, understanding the functional impact of CD3 antigen-binding fragment modifications is of utmost importance for defining critical quality attributes (CQA). The current CQA assessment strategy requires the integration of structure-based physicochemical separation and functional cell-based potency assays. However, this strategy is tedious, and coexisting proteoforms with potentially different functionalities may not be individually assessed. This increases the degree of ambiguities for defining meaningful CQAs, particularly for complex bispecific antibody formats such as TCBs. Here, we report for the first time a proof-of-concept study to separate and identify critically modified proteoforms of TCBs using functional CD3 target affinity chromatography (AC) coupled with online mass spectrometry (MS). Our method enabled functional distinction of relevant deamidated and glycosylated proteoforms and the simultaneous assessment of product-related variants such as TCB mispairings. For example, CD3 AC-MS allowed us to separate TCB mispairings with increased CD3 binding (i.e., knob–knob homodimers) within the bound fraction. The functional separation of proteoforms was validated using an established workflow for CQA identification based on thoroughly characterized ion-exchange fractions of a 2+1 TCB. In addition, the new method facilitated the criticality assessment of post-translational modifications in stress studies and structural variants in early stage clone selection. CD3 AC-MS has high impact for streamlining the integration of functional and structural characterizations of the large landscape of therapeutic CD3 targeting TCBs from early stage research to late stage characterization.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.2c03827</identifier><identifier>PMID: 36638115</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Affinity ; Affinity chromatography ; Antibodies ; Antibodies, Bispecific - metabolism ; Antigen (tumor-associated) ; Antigens ; Binding ; Bispecific antibodies ; CD3 antigen ; CD3 Complex - metabolism ; Chemistry ; Chromatography ; Chromatography, Affinity ; Fractions ; Glycosylation ; Ion exchange ; Lymphocytes T ; Mass Spectrometry ; Mass spectroscopy ; Post-translation ; Protein Processing, Post-Translational ; Quality management ; Scientific imaging ; Separation ; Spectroscopy ; Streamlining ; Structural analysis ; Structure-function relationships ; T-Lymphocytes - metabolism ; Workflow</subject><ispartof>Analytical chemistry (Washington), 2023-01, Vol.95 (4), p.2260-2268</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Jan 31, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a306t-b4a1e43c707aafd26b9bd16973d8ed8b3e85cec39dbfb8fbcd392fa898be59bf3</citedby><cites>FETCH-LOGICAL-a306t-b4a1e43c707aafd26b9bd16973d8ed8b3e85cec39dbfb8fbcd392fa898be59bf3</cites><orcidid>0000-0002-1032-5808 ; 0000-0002-0724-3262 ; 0000-0003-0769-5573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.2c03827$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.2c03827$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36638115$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lippold, Steffen</creatorcontrib><creatorcontrib>Hook, Michaela</creatorcontrib><creatorcontrib>Spick, Christian</creatorcontrib><creatorcontrib>Knaupp, Alexander</creatorcontrib><creatorcontrib>Whang, Kevin</creatorcontrib><creatorcontrib>Ruperti, Fabian</creatorcontrib><creatorcontrib>Cadang, Lance</creatorcontrib><creatorcontrib>Andersen, Nisana</creatorcontrib><creatorcontrib>Vogt, Annette</creatorcontrib><creatorcontrib>Grote, Michael</creatorcontrib><creatorcontrib>Reusch, Dietmar</creatorcontrib><creatorcontrib>Haberger, Markus</creatorcontrib><creatorcontrib>Yang, Feng</creatorcontrib><creatorcontrib>Schlothauer, Tilman</creatorcontrib><title>CD3 Target Affinity Chromatography Mass Spectrometry as a New Tool for Function–Structure Characterization of T‑Cell Engaging Bispecific Antibody Proteoforms and Product-Related Variants</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>T-cell engaging bispecific antibodies (TCBs) targeting CD3 and tumor-specific antigens are very promising therapeutic modalities. Since CD3 binding is crucial for the potency of TCBs, understanding the functional impact of CD3 antigen-binding fragment modifications is of utmost importance for defining critical quality attributes (CQA). The current CQA assessment strategy requires the integration of structure-based physicochemical separation and functional cell-based potency assays. However, this strategy is tedious, and coexisting proteoforms with potentially different functionalities may not be individually assessed. This increases the degree of ambiguities for defining meaningful CQAs, particularly for complex bispecific antibody formats such as TCBs. Here, we report for the first time a proof-of-concept study to separate and identify critically modified proteoforms of TCBs using functional CD3 target affinity chromatography (AC) coupled with online mass spectrometry (MS). Our method enabled functional distinction of relevant deamidated and glycosylated proteoforms and the simultaneous assessment of product-related variants such as TCB mispairings. For example, CD3 AC-MS allowed us to separate TCB mispairings with increased CD3 binding (i.e., knob–knob homodimers) within the bound fraction. The functional separation of proteoforms was validated using an established workflow for CQA identification based on thoroughly characterized ion-exchange fractions of a 2+1 TCB. In addition, the new method facilitated the criticality assessment of post-translational modifications in stress studies and structural variants in early stage clone selection. CD3 AC-MS has high impact for streamlining the integration of functional and structural characterizations of the large landscape of therapeutic CD3 targeting TCBs from early stage research to late stage characterization.</description><subject>Affinity</subject><subject>Affinity chromatography</subject><subject>Antibodies</subject><subject>Antibodies, Bispecific - metabolism</subject><subject>Antigen (tumor-associated)</subject><subject>Antigens</subject><subject>Binding</subject><subject>Bispecific antibodies</subject><subject>CD3 antigen</subject><subject>CD3 Complex - metabolism</subject><subject>Chemistry</subject><subject>Chromatography</subject><subject>Chromatography, Affinity</subject><subject>Fractions</subject><subject>Glycosylation</subject><subject>Ion exchange</subject><subject>Lymphocytes T</subject><subject>Mass Spectrometry</subject><subject>Mass spectroscopy</subject><subject>Post-translation</subject><subject>Protein Processing, Post-Translational</subject><subject>Quality management</subject><subject>Scientific imaging</subject><subject>Separation</subject><subject>Spectroscopy</subject><subject>Streamlining</subject><subject>Structural analysis</subject><subject>Structure-function relationships</subject><subject>T-Lymphocytes - metabolism</subject><subject>Workflow</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAURiMEokPhDRCyxIZNBjueJM5yGFpAKj-iA9vo2r6ecZXEU9sRCqu-AuJ9eJg-CR7NtAsWrCzb5ztXV1-WPWd0zmjBXoMKcxigU1vs54WiXBT1g2zGyoLmlRDFw2xGKeV5UVN6kj0J4YpSxiirHmcnvKq4YKycZX9WbzlZg99gJEtj7GDjRFZb73qIbuNht53IRwiBXO5QxfSM0U8EAgHyCX-QtXMdMc6T83FQ0brh9ub3ZfSjiqPH5AEPKqK3P2H_SZwh69ubXyvsOnI2bGBjhw15Y0NyW2MVWQ7RSqcn8sW7iC6J-zRp0Pu7TtL8K3YQUZPv4C0MMTzNHhnoAj47nqfZt_Oz9ep9fvH53YfV8iIHTquYywUwXHBV0xrA6KKSjdSsamquBWohOYpSoeKNlkYKI5XmTWFANEJi2UjDT7NXB-_Ou-sRQ2x7G1RaAwZ0Y2iLuirresGbJqEv_0Gv3OhTUXuqZlzwuigTtThQyrsQPJp2520PfmoZbff9tqnf9q7f9thvir04ykfZo74P3RWaAHoA9vH7wf91_gWcYruf</recordid><startdate>20230131</startdate><enddate>20230131</enddate><creator>Lippold, Steffen</creator><creator>Hook, Michaela</creator><creator>Spick, Christian</creator><creator>Knaupp, Alexander</creator><creator>Whang, Kevin</creator><creator>Ruperti, Fabian</creator><creator>Cadang, Lance</creator><creator>Andersen, Nisana</creator><creator>Vogt, Annette</creator><creator>Grote, Michael</creator><creator>Reusch, Dietmar</creator><creator>Haberger, Markus</creator><creator>Yang, Feng</creator><creator>Schlothauer, Tilman</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1032-5808</orcidid><orcidid>https://orcid.org/0000-0002-0724-3262</orcidid><orcidid>https://orcid.org/0000-0003-0769-5573</orcidid></search><sort><creationdate>20230131</creationdate><title>CD3 Target Affinity Chromatography Mass Spectrometry as a New Tool for Function–Structure Characterization of T‑Cell Engaging Bispecific Antibody Proteoforms and Product-Related Variants</title><author>Lippold, Steffen ; Hook, Michaela ; Spick, Christian ; Knaupp, Alexander ; Whang, Kevin ; Ruperti, Fabian ; Cadang, Lance ; Andersen, Nisana ; Vogt, Annette ; Grote, Michael ; Reusch, Dietmar ; Haberger, Markus ; Yang, Feng ; Schlothauer, Tilman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a306t-b4a1e43c707aafd26b9bd16973d8ed8b3e85cec39dbfb8fbcd392fa898be59bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Affinity</topic><topic>Affinity chromatography</topic><topic>Antibodies</topic><topic>Antibodies, Bispecific - metabolism</topic><topic>Antigen (tumor-associated)</topic><topic>Antigens</topic><topic>Binding</topic><topic>Bispecific antibodies</topic><topic>CD3 antigen</topic><topic>CD3 Complex - metabolism</topic><topic>Chemistry</topic><topic>Chromatography</topic><topic>Chromatography, Affinity</topic><topic>Fractions</topic><topic>Glycosylation</topic><topic>Ion exchange</topic><topic>Lymphocytes T</topic><topic>Mass Spectrometry</topic><topic>Mass spectroscopy</topic><topic>Post-translation</topic><topic>Protein Processing, Post-Translational</topic><topic>Quality management</topic><topic>Scientific imaging</topic><topic>Separation</topic><topic>Spectroscopy</topic><topic>Streamlining</topic><topic>Structural analysis</topic><topic>Structure-function relationships</topic><topic>T-Lymphocytes - metabolism</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lippold, Steffen</creatorcontrib><creatorcontrib>Hook, Michaela</creatorcontrib><creatorcontrib>Spick, Christian</creatorcontrib><creatorcontrib>Knaupp, Alexander</creatorcontrib><creatorcontrib>Whang, Kevin</creatorcontrib><creatorcontrib>Ruperti, Fabian</creatorcontrib><creatorcontrib>Cadang, Lance</creatorcontrib><creatorcontrib>Andersen, Nisana</creatorcontrib><creatorcontrib>Vogt, Annette</creatorcontrib><creatorcontrib>Grote, Michael</creatorcontrib><creatorcontrib>Reusch, Dietmar</creatorcontrib><creatorcontrib>Haberger, Markus</creatorcontrib><creatorcontrib>Yang, Feng</creatorcontrib><creatorcontrib>Schlothauer, Tilman</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lippold, Steffen</au><au>Hook, Michaela</au><au>Spick, Christian</au><au>Knaupp, Alexander</au><au>Whang, Kevin</au><au>Ruperti, Fabian</au><au>Cadang, Lance</au><au>Andersen, Nisana</au><au>Vogt, Annette</au><au>Grote, Michael</au><au>Reusch, Dietmar</au><au>Haberger, Markus</au><au>Yang, Feng</au><au>Schlothauer, Tilman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CD3 Target Affinity Chromatography Mass Spectrometry as a New Tool for Function–Structure Characterization of T‑Cell Engaging Bispecific Antibody Proteoforms and Product-Related Variants</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2023-01-31</date><risdate>2023</risdate><volume>95</volume><issue>4</issue><spage>2260</spage><epage>2268</epage><pages>2260-2268</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>T-cell engaging bispecific antibodies (TCBs) targeting CD3 and tumor-specific antigens are very promising therapeutic modalities. Since CD3 binding is crucial for the potency of TCBs, understanding the functional impact of CD3 antigen-binding fragment modifications is of utmost importance for defining critical quality attributes (CQA). The current CQA assessment strategy requires the integration of structure-based physicochemical separation and functional cell-based potency assays. However, this strategy is tedious, and coexisting proteoforms with potentially different functionalities may not be individually assessed. This increases the degree of ambiguities for defining meaningful CQAs, particularly for complex bispecific antibody formats such as TCBs. Here, we report for the first time a proof-of-concept study to separate and identify critically modified proteoforms of TCBs using functional CD3 target affinity chromatography (AC) coupled with online mass spectrometry (MS). Our method enabled functional distinction of relevant deamidated and glycosylated proteoforms and the simultaneous assessment of product-related variants such as TCB mispairings. For example, CD3 AC-MS allowed us to separate TCB mispairings with increased CD3 binding (i.e., knob–knob homodimers) within the bound fraction. The functional separation of proteoforms was validated using an established workflow for CQA identification based on thoroughly characterized ion-exchange fractions of a 2+1 TCB. In addition, the new method facilitated the criticality assessment of post-translational modifications in stress studies and structural variants in early stage clone selection. CD3 AC-MS has high impact for streamlining the integration of functional and structural characterizations of the large landscape of therapeutic CD3 targeting TCBs from early stage research to late stage characterization.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36638115</pmid><doi>10.1021/acs.analchem.2c03827</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1032-5808</orcidid><orcidid>https://orcid.org/0000-0002-0724-3262</orcidid><orcidid>https://orcid.org/0000-0003-0769-5573</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2023-01, Vol.95 (4), p.2260-2268 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2765774399 |
source | MEDLINE; American Chemical Society Journals |
subjects | Affinity Affinity chromatography Antibodies Antibodies, Bispecific - metabolism Antigen (tumor-associated) Antigens Binding Bispecific antibodies CD3 antigen CD3 Complex - metabolism Chemistry Chromatography Chromatography, Affinity Fractions Glycosylation Ion exchange Lymphocytes T Mass Spectrometry Mass spectroscopy Post-translation Protein Processing, Post-Translational Quality management Scientific imaging Separation Spectroscopy Streamlining Structural analysis Structure-function relationships T-Lymphocytes - metabolism Workflow |
title | CD3 Target Affinity Chromatography Mass Spectrometry as a New Tool for Function–Structure Characterization of T‑Cell Engaging Bispecific Antibody Proteoforms and Product-Related Variants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CD3%20Target%20Affinity%20Chromatography%20Mass%20Spectrometry%20as%20a%20New%20Tool%20for%20Function%E2%80%93Structure%20Characterization%20of%20T%E2%80%91Cell%20Engaging%20Bispecific%20Antibody%20Proteoforms%20and%20Product-Related%20Variants&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Lippold,%20Steffen&rft.date=2023-01-31&rft.volume=95&rft.issue=4&rft.spage=2260&rft.epage=2268&rft.pages=2260-2268&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.2c03827&rft_dat=%3Cproquest_cross%3E2765774399%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771383725&rft_id=info:pmid/36638115&rfr_iscdi=true |