Water table prediction through causal reasoning modelling

This research is mainly aimed to analyze and model the relationship of the binomial Rainfall-Piezometry. In this sense, the inherent causality contained in temporal hourly Rainfall and Groundwater levels (piezometry) data records has been taken. This has been done through Bayesian Causal Reasoning (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2023-04, Vol.867, p.161492-161492, Article 161492
Hauptverfasser: Molina, José-Luis, García-Aróstegui, Jose-Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 161492
container_issue
container_start_page 161492
container_title The Science of the total environment
container_volume 867
creator Molina, José-Luis
García-Aróstegui, Jose-Luis
description This research is mainly aimed to analyze and model the relationship of the binomial Rainfall-Piezometry. In this sense, the inherent causality contained in temporal hourly Rainfall and Groundwater levels (piezometry) data records has been taken. This has been done through Bayesian Causal Reasoning (BCR) which is technique belonging to Artificial Intelligence (AI) based on Bayesian Theorem. The methodology comprises two main stages, first an analytical method from classic regression analysis, and second, a Bayesian Causal Modelling Translation (BCMT) that itself comprises several iterative steps. This research ultimately becomes a tool for aquifers management that comprises a bivariate function made of two variables Rainfall and Piezometry (Temporal Groundwater level evolution). This innovative methodology has been successfully applied in the Quaternary aquifer of the Campo de Cartagena groundwater body, which is an aquifer system that directly is connected to Mar Menor coastal lagoon (Murcia region, SE Spain). [Display omitted] •Causal Reasoning modelling for the study of groundwater hydrodynamic processes•Analyze and model the relationship of the binomial Rainfall-Piezometry•Bayesian Causal Reasoning (BCR) to capture the inherent causality in data records•Hourly Rainfall and Piezometry data were used to capture the sudden aquifer response.•Applied to the Quaternary aquifer of the Campo de Cartagena groundwater body
doi_str_mv 10.1016/j.scitotenv.2023.161492
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2765773284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969723001079</els_id><sourcerecordid>2765773284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-4cffb56629dd1a19b797b3a35517e59f03c9c1a586fc5ef63454bd7bb8d3559d3</originalsourceid><addsrcrecordid>eNqFkM9PwyAUx4nRuDn9F7RHL61QWijHZfFXssSLxiOh8Lp1acsEusT_XpbqrnJ5kHze-_I-CN0RnBFM2MMu87oNNsBwyHKc04wwUoj8DM1JxUVKcM7O0RzjokoFE3yGrrzf4Xh4RS7RjDJGRXzNkfhUAVwSVN1BsndgWh1aOyRh6-y42SZajV51iQPl7dAOm6S3Brou3q7RRaM6Dze_dYE-nh7fVy_p-u35dbVcpzqmhLTQTVOXjOXCGKKIqLngNVW0LAmHUjSYaqGJKivW6BIaRouyqA2v68pERhi6QPfT3L2zXyP4IPvW6_gHNYAdvcw5KzmneVVElE-odtZ7B43cu7ZX7lsSLI_e5E6evMmjNzl5i523vyFj3YM59f2JisByAiCuemjBHQfBoKMwBzpIY9t_Q34AA76DWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765773284</pqid></control><display><type>article</type><title>Water table prediction through causal reasoning modelling</title><source>Elsevier ScienceDirect Journals</source><creator>Molina, José-Luis ; García-Aróstegui, Jose-Luis</creator><creatorcontrib>Molina, José-Luis ; García-Aróstegui, Jose-Luis</creatorcontrib><description>This research is mainly aimed to analyze and model the relationship of the binomial Rainfall-Piezometry. In this sense, the inherent causality contained in temporal hourly Rainfall and Groundwater levels (piezometry) data records has been taken. This has been done through Bayesian Causal Reasoning (BCR) which is technique belonging to Artificial Intelligence (AI) based on Bayesian Theorem. The methodology comprises two main stages, first an analytical method from classic regression analysis, and second, a Bayesian Causal Modelling Translation (BCMT) that itself comprises several iterative steps. This research ultimately becomes a tool for aquifers management that comprises a bivariate function made of two variables Rainfall and Piezometry (Temporal Groundwater level evolution). This innovative methodology has been successfully applied in the Quaternary aquifer of the Campo de Cartagena groundwater body, which is an aquifer system that directly is connected to Mar Menor coastal lagoon (Murcia region, SE Spain). [Display omitted] •Causal Reasoning modelling for the study of groundwater hydrodynamic processes•Analyze and model the relationship of the binomial Rainfall-Piezometry•Bayesian Causal Reasoning (BCR) to capture the inherent causality in data records•Hourly Rainfall and Piezometry data were used to capture the sudden aquifer response.•Applied to the Quaternary aquifer of the Campo de Cartagena groundwater body</description><identifier>ISSN: 0048-9697</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2023.161492</identifier><identifier>PMID: 36639000</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Aquifers ; Bayesian Causal Modelling ; Groundwater ; Hydrodynamics ; Uncertainty ; Water management</subject><ispartof>The Science of the total environment, 2023-04, Vol.867, p.161492-161492, Article 161492</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c366t-4cffb56629dd1a19b797b3a35517e59f03c9c1a586fc5ef63454bd7bb8d3559d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.scitotenv.2023.161492$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36639000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Molina, José-Luis</creatorcontrib><creatorcontrib>García-Aróstegui, Jose-Luis</creatorcontrib><title>Water table prediction through causal reasoning modelling</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>This research is mainly aimed to analyze and model the relationship of the binomial Rainfall-Piezometry. In this sense, the inherent causality contained in temporal hourly Rainfall and Groundwater levels (piezometry) data records has been taken. This has been done through Bayesian Causal Reasoning (BCR) which is technique belonging to Artificial Intelligence (AI) based on Bayesian Theorem. The methodology comprises two main stages, first an analytical method from classic regression analysis, and second, a Bayesian Causal Modelling Translation (BCMT) that itself comprises several iterative steps. This research ultimately becomes a tool for aquifers management that comprises a bivariate function made of two variables Rainfall and Piezometry (Temporal Groundwater level evolution). This innovative methodology has been successfully applied in the Quaternary aquifer of the Campo de Cartagena groundwater body, which is an aquifer system that directly is connected to Mar Menor coastal lagoon (Murcia region, SE Spain). [Display omitted] •Causal Reasoning modelling for the study of groundwater hydrodynamic processes•Analyze and model the relationship of the binomial Rainfall-Piezometry•Bayesian Causal Reasoning (BCR) to capture the inherent causality in data records•Hourly Rainfall and Piezometry data were used to capture the sudden aquifer response.•Applied to the Quaternary aquifer of the Campo de Cartagena groundwater body</description><subject>Aquifers</subject><subject>Bayesian Causal Modelling</subject><subject>Groundwater</subject><subject>Hydrodynamics</subject><subject>Uncertainty</subject><subject>Water management</subject><issn>0048-9697</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM9PwyAUx4nRuDn9F7RHL61QWijHZfFXssSLxiOh8Lp1acsEusT_XpbqrnJ5kHze-_I-CN0RnBFM2MMu87oNNsBwyHKc04wwUoj8DM1JxUVKcM7O0RzjokoFE3yGrrzf4Xh4RS7RjDJGRXzNkfhUAVwSVN1BsndgWh1aOyRh6-y42SZajV51iQPl7dAOm6S3Brou3q7RRaM6Dze_dYE-nh7fVy_p-u35dbVcpzqmhLTQTVOXjOXCGKKIqLngNVW0LAmHUjSYaqGJKivW6BIaRouyqA2v68pERhi6QPfT3L2zXyP4IPvW6_gHNYAdvcw5KzmneVVElE-odtZ7B43cu7ZX7lsSLI_e5E6evMmjNzl5i523vyFj3YM59f2JisByAiCuemjBHQfBoKMwBzpIY9t_Q34AA76DWA</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Molina, José-Luis</creator><creator>García-Aróstegui, Jose-Luis</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230401</creationdate><title>Water table prediction through causal reasoning modelling</title><author>Molina, José-Luis ; García-Aróstegui, Jose-Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-4cffb56629dd1a19b797b3a35517e59f03c9c1a586fc5ef63454bd7bb8d3559d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aquifers</topic><topic>Bayesian Causal Modelling</topic><topic>Groundwater</topic><topic>Hydrodynamics</topic><topic>Uncertainty</topic><topic>Water management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molina, José-Luis</creatorcontrib><creatorcontrib>García-Aróstegui, Jose-Luis</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molina, José-Luis</au><au>García-Aróstegui, Jose-Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water table prediction through causal reasoning modelling</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>867</volume><spage>161492</spage><epage>161492</epage><pages>161492-161492</pages><artnum>161492</artnum><issn>0048-9697</issn><eissn>1879-1026</eissn><abstract>This research is mainly aimed to analyze and model the relationship of the binomial Rainfall-Piezometry. In this sense, the inherent causality contained in temporal hourly Rainfall and Groundwater levels (piezometry) data records has been taken. This has been done through Bayesian Causal Reasoning (BCR) which is technique belonging to Artificial Intelligence (AI) based on Bayesian Theorem. The methodology comprises two main stages, first an analytical method from classic regression analysis, and second, a Bayesian Causal Modelling Translation (BCMT) that itself comprises several iterative steps. This research ultimately becomes a tool for aquifers management that comprises a bivariate function made of two variables Rainfall and Piezometry (Temporal Groundwater level evolution). This innovative methodology has been successfully applied in the Quaternary aquifer of the Campo de Cartagena groundwater body, which is an aquifer system that directly is connected to Mar Menor coastal lagoon (Murcia region, SE Spain). [Display omitted] •Causal Reasoning modelling for the study of groundwater hydrodynamic processes•Analyze and model the relationship of the binomial Rainfall-Piezometry•Bayesian Causal Reasoning (BCR) to capture the inherent causality in data records•Hourly Rainfall and Piezometry data were used to capture the sudden aquifer response.•Applied to the Quaternary aquifer of the Campo de Cartagena groundwater body</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>36639000</pmid><doi>10.1016/j.scitotenv.2023.161492</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0048-9697
ispartof The Science of the total environment, 2023-04, Vol.867, p.161492-161492, Article 161492
issn 0048-9697
1879-1026
language eng
recordid cdi_proquest_miscellaneous_2765773284
source Elsevier ScienceDirect Journals
subjects Aquifers
Bayesian Causal Modelling
Groundwater
Hydrodynamics
Uncertainty
Water management
title Water table prediction through causal reasoning modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20table%20prediction%20through%20causal%20reasoning%20modelling&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Molina,%20Jos%C3%A9-Luis&rft.date=2023-04-01&rft.volume=867&rft.spage=161492&rft.epage=161492&rft.pages=161492-161492&rft.artnum=161492&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2023.161492&rft_dat=%3Cproquest_cross%3E2765773284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2765773284&rft_id=info:pmid/36639000&rft_els_id=S0048969723001079&rfr_iscdi=true