Metaheuristic optimization of data preparation and machine learning hyperparameters for prediction of dynamic methane production

[Display omitted] •Combined optimization of data preparation and model parameters shows best result.•Hyperparameter optimization is most influential on model performance.•Few measurements are needed for prediction of steady-state methane production.•Model performance does not generally increase with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2023-03, Vol.372, p.128604-128604, Article 128604
Hauptverfasser: Meola, Alberto, Winkler, Manuel, Weinrich, Sören
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 128604
container_issue
container_start_page 128604
container_title Bioresource technology
container_volume 372
creator Meola, Alberto
Winkler, Manuel
Weinrich, Sören
description [Display omitted] •Combined optimization of data preparation and model parameters shows best result.•Hyperparameter optimization is most influential on model performance.•Few measurements are needed for prediction of steady-state methane production.•Model performance does not generally increase with model complexity. Machine learning algorithms provide detailed description of the anaerobic digestion process, but the impact of data preparation procedures and hyperparameter optimization has rarely been investigated. A genetic algorithm was developed for optimizing data preparation and model hyperparameters to simulate dynamic methane production from steady-state anaerobic digestion of agricultural residues at full-scale. A long short-term memory neural network was used as prediction model. Results indicate that batch size, learning rate and number of neurons are the most important model parameters for accurate description of methane production rates, whereas combination of hyperparameter and data preparation optimization shows best model efficiencies, with a root mean square scaled error of 76.5 %. Mass of solid feed, time and mass of volatile solids are the most relevant input features. This study provides fundamental steps for optimal prediction of dynamic biomethane production, as a reliable basis for improving bioconversion efficiency during anaerobic digestion of agricultural residues.
doi_str_mv 10.1016/j.biortech.2023.128604
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2765773079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852423000305</els_id><sourcerecordid>2765773079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-9297d1cb0a6c4eb5d3dc41c248b73ee7023a5733a749dae00431a810cc5cfbc83</originalsourceid><addsrcrecordid>eNqFkM1u3CAURlHVqpkkfYXIy2w8AWMD3rWKmh8pVTfNGuHLdc1obFzAkSarPnqYOsm2KyQ433e5h5ALRreMMnG123bOh4QwbCta8S2rlKD1B7JhSvKyaqX4SDa0FbRUTVWfkNMYd5RSzmT1mZxwIXitpNqQvz8wmQGX4GJyUPg5udE9m-T8VPi-sCaZYg44m7DemckWo4HBTVjs0YTJTb-L4TBjOCIjJgyx6H04hqyD957DZMbcn4HB5OgcvF3-vZ6TT73ZR_zyep6Rx5vvv67vyoeft_fX3x5K4EKlss0rWQYdNQJq7BrLLdQMqlp1kiPK7MA0knMj69YapLTmzChGARroO1D8jFyuvXn0nwVj0qOLgPt9_o5foq6kaKTkVLYZFSsKwccYsNdzcKMJB82oPtrXO_1mXx_t69V-Dl68zli6Ee177E13Br6uAOZNnxwGHcHhBFlVQEjaeve_GS-HiJ1z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765773079</pqid></control><display><type>article</type><title>Metaheuristic optimization of data preparation and machine learning hyperparameters for prediction of dynamic methane production</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Meola, Alberto ; Winkler, Manuel ; Weinrich, Sören</creator><creatorcontrib>Meola, Alberto ; Winkler, Manuel ; Weinrich, Sören</creatorcontrib><description>[Display omitted] •Combined optimization of data preparation and model parameters shows best result.•Hyperparameter optimization is most influential on model performance.•Few measurements are needed for prediction of steady-state methane production.•Model performance does not generally increase with model complexity. Machine learning algorithms provide detailed description of the anaerobic digestion process, but the impact of data preparation procedures and hyperparameter optimization has rarely been investigated. A genetic algorithm was developed for optimizing data preparation and model hyperparameters to simulate dynamic methane production from steady-state anaerobic digestion of agricultural residues at full-scale. A long short-term memory neural network was used as prediction model. Results indicate that batch size, learning rate and number of neurons are the most important model parameters for accurate description of methane production rates, whereas combination of hyperparameter and data preparation optimization shows best model efficiencies, with a root mean square scaled error of 76.5 %. Mass of solid feed, time and mass of volatile solids are the most relevant input features. This study provides fundamental steps for optimal prediction of dynamic biomethane production, as a reliable basis for improving bioconversion efficiency during anaerobic digestion of agricultural residues.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2023.128604</identifier><identifier>PMID: 36634878</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Anaerobic digestion ; Anaerobiosis ; Artificial intelligence ; Biofuels ; Biogas technology ; Bioreactors ; Data processing ; Machine Learning ; Methane ; Parameter estimation</subject><ispartof>Bioresource technology, 2023-03, Vol.372, p.128604-128604, Article 128604</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-9297d1cb0a6c4eb5d3dc41c248b73ee7023a5733a749dae00431a810cc5cfbc83</citedby><cites>FETCH-LOGICAL-c368t-9297d1cb0a6c4eb5d3dc41c248b73ee7023a5733a749dae00431a810cc5cfbc83</cites><orcidid>0000-0002-5789-6923 ; 0000-0002-9393-7542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960852423000305$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36634878$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meola, Alberto</creatorcontrib><creatorcontrib>Winkler, Manuel</creatorcontrib><creatorcontrib>Weinrich, Sören</creatorcontrib><title>Metaheuristic optimization of data preparation and machine learning hyperparameters for prediction of dynamic methane production</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>[Display omitted] •Combined optimization of data preparation and model parameters shows best result.•Hyperparameter optimization is most influential on model performance.•Few measurements are needed for prediction of steady-state methane production.•Model performance does not generally increase with model complexity. Machine learning algorithms provide detailed description of the anaerobic digestion process, but the impact of data preparation procedures and hyperparameter optimization has rarely been investigated. A genetic algorithm was developed for optimizing data preparation and model hyperparameters to simulate dynamic methane production from steady-state anaerobic digestion of agricultural residues at full-scale. A long short-term memory neural network was used as prediction model. Results indicate that batch size, learning rate and number of neurons are the most important model parameters for accurate description of methane production rates, whereas combination of hyperparameter and data preparation optimization shows best model efficiencies, with a root mean square scaled error of 76.5 %. Mass of solid feed, time and mass of volatile solids are the most relevant input features. This study provides fundamental steps for optimal prediction of dynamic biomethane production, as a reliable basis for improving bioconversion efficiency during anaerobic digestion of agricultural residues.</description><subject>Anaerobic digestion</subject><subject>Anaerobiosis</subject><subject>Artificial intelligence</subject><subject>Biofuels</subject><subject>Biogas technology</subject><subject>Bioreactors</subject><subject>Data processing</subject><subject>Machine Learning</subject><subject>Methane</subject><subject>Parameter estimation</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1u3CAURlHVqpkkfYXIy2w8AWMD3rWKmh8pVTfNGuHLdc1obFzAkSarPnqYOsm2KyQ433e5h5ALRreMMnG123bOh4QwbCta8S2rlKD1B7JhSvKyaqX4SDa0FbRUTVWfkNMYd5RSzmT1mZxwIXitpNqQvz8wmQGX4GJyUPg5udE9m-T8VPi-sCaZYg44m7DemckWo4HBTVjs0YTJTb-L4TBjOCIjJgyx6H04hqyD957DZMbcn4HB5OgcvF3-vZ6TT73ZR_zyep6Rx5vvv67vyoeft_fX3x5K4EKlss0rWQYdNQJq7BrLLdQMqlp1kiPK7MA0knMj69YapLTmzChGARroO1D8jFyuvXn0nwVj0qOLgPt9_o5foq6kaKTkVLYZFSsKwccYsNdzcKMJB82oPtrXO_1mXx_t69V-Dl68zli6Ee177E13Br6uAOZNnxwGHcHhBFlVQEjaeve_GS-HiJ1z</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Meola, Alberto</creator><creator>Winkler, Manuel</creator><creator>Weinrich, Sören</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5789-6923</orcidid><orcidid>https://orcid.org/0000-0002-9393-7542</orcidid></search><sort><creationdate>202303</creationdate><title>Metaheuristic optimization of data preparation and machine learning hyperparameters for prediction of dynamic methane production</title><author>Meola, Alberto ; Winkler, Manuel ; Weinrich, Sören</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-9297d1cb0a6c4eb5d3dc41c248b73ee7023a5733a749dae00431a810cc5cfbc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anaerobic digestion</topic><topic>Anaerobiosis</topic><topic>Artificial intelligence</topic><topic>Biofuels</topic><topic>Biogas technology</topic><topic>Bioreactors</topic><topic>Data processing</topic><topic>Machine Learning</topic><topic>Methane</topic><topic>Parameter estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meola, Alberto</creatorcontrib><creatorcontrib>Winkler, Manuel</creatorcontrib><creatorcontrib>Weinrich, Sören</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meola, Alberto</au><au>Winkler, Manuel</au><au>Weinrich, Sören</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metaheuristic optimization of data preparation and machine learning hyperparameters for prediction of dynamic methane production</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2023-03</date><risdate>2023</risdate><volume>372</volume><spage>128604</spage><epage>128604</epage><pages>128604-128604</pages><artnum>128604</artnum><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>[Display omitted] •Combined optimization of data preparation and model parameters shows best result.•Hyperparameter optimization is most influential on model performance.•Few measurements are needed for prediction of steady-state methane production.•Model performance does not generally increase with model complexity. Machine learning algorithms provide detailed description of the anaerobic digestion process, but the impact of data preparation procedures and hyperparameter optimization has rarely been investigated. A genetic algorithm was developed for optimizing data preparation and model hyperparameters to simulate dynamic methane production from steady-state anaerobic digestion of agricultural residues at full-scale. A long short-term memory neural network was used as prediction model. Results indicate that batch size, learning rate and number of neurons are the most important model parameters for accurate description of methane production rates, whereas combination of hyperparameter and data preparation optimization shows best model efficiencies, with a root mean square scaled error of 76.5 %. Mass of solid feed, time and mass of volatile solids are the most relevant input features. This study provides fundamental steps for optimal prediction of dynamic biomethane production, as a reliable basis for improving bioconversion efficiency during anaerobic digestion of agricultural residues.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>36634878</pmid><doi>10.1016/j.biortech.2023.128604</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5789-6923</orcidid><orcidid>https://orcid.org/0000-0002-9393-7542</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2023-03, Vol.372, p.128604-128604, Article 128604
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_2765773079
source MEDLINE; Elsevier ScienceDirect Journals
subjects Anaerobic digestion
Anaerobiosis
Artificial intelligence
Biofuels
Biogas technology
Bioreactors
Data processing
Machine Learning
Methane
Parameter estimation
title Metaheuristic optimization of data preparation and machine learning hyperparameters for prediction of dynamic methane production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metaheuristic%20optimization%20of%20data%20preparation%20and%20machine%20learning%20hyperparameters%20for%20prediction%20of%20dynamic%20methane%20production&rft.jtitle=Bioresource%20technology&rft.au=Meola,%20Alberto&rft.date=2023-03&rft.volume=372&rft.spage=128604&rft.epage=128604&rft.pages=128604-128604&rft.artnum=128604&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2023.128604&rft_dat=%3Cproquest_cross%3E2765773079%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2765773079&rft_id=info:pmid/36634878&rft_els_id=S0960852423000305&rfr_iscdi=true