Application of moving adaptive grids for numerical solution of 2D nonstationary problems in gas dynamics

Solution‐adaptive grid generation procedure is coupled with the Godunov‐type solver of the second‐order accuracy. Dynamically adaptive grids, clustered to singularities, allow to increase the accuracy of numerical solution. The theory of harmonic maps is used as a theoretical framework for grid gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in fluids 2002-05, Vol.39 (1), p.1-22
Hauptverfasser: Ivanenko, Sergey A., Azarenok, Boris N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue 1
container_start_page 1
container_title International journal for numerical methods in fluids
container_volume 39
creator Ivanenko, Sergey A.
Azarenok, Boris N.
description Solution‐adaptive grid generation procedure is coupled with the Godunov‐type solver of the second‐order accuracy. Dynamically adaptive grids, clustered to singularities, allow to increase the accuracy of numerical solution. The theory of harmonic maps is used as a theoretical framework for grid generation. The problem of constructing harmonic coordinates on the surface of the graph of control function is formulated. The projection of these coordinates onto a physical domain produces an adaptive‐harmonic structured grid. A variational grid generator which can be used also in the case of unstructured grids with adaptation to a vector‐function is described in detail. The discrete functional has an infinite barrier on the boundary of the set of grids with all convex cells and this guarantees unfolded grid generation at every time step. Results of test computations are presented. Copyright © 2002 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/fld.233
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27652501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27652501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3923-b3f703e3ba2861720a04c272b74aa7c85cbca212ef88aace4ceae5f7bb6a57163</originalsourceid><addsrcrecordid>eNqN0DtPwzAUBWALgUR5iL_gCQaU4kcTJyNQWpCqIhAPicW6cZ1icOJgJ0D_PYEAGxLTXT4dnXsQ2qNkSAlhR4VdDBnna2hASSYiwhO-jgaECRoxktFNtBXCEyEkYykfoMfjurZGQWNchV2BS_dqqiWGBdSNedV46c0i4MJ5XLWl9p20ODjb_ng2xpWrQvMVAH6Fa-9yq8uATYWXEPBiVUFpVNhBGwXYoHe_7za6nZzdnJ5Hs8vpxenxLFI8YzzKeSEI1zwHliZUMAJkpJhguRgBCJXGKlfAKNNFmgIoPVIadFyIPE8gFjTh22i_z-2KvLQ6NLI0QWlrodKuDZKJJGYxof-BPEtGcQcPeqi8C8HrQtbelN2vkhL5ObnsJpfd5J087OWbsXr1F5OT2bjXUa9NaPT7rwb_LBPBRSzv51MZT66vxPzhTp7wDzmPkr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27639645</pqid></control><display><type>article</type><title>Application of moving adaptive grids for numerical solution of 2D nonstationary problems in gas dynamics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ivanenko, Sergey A. ; Azarenok, Boris N.</creator><creatorcontrib>Ivanenko, Sergey A. ; Azarenok, Boris N.</creatorcontrib><description>Solution‐adaptive grid generation procedure is coupled with the Godunov‐type solver of the second‐order accuracy. Dynamically adaptive grids, clustered to singularities, allow to increase the accuracy of numerical solution. The theory of harmonic maps is used as a theoretical framework for grid generation. The problem of constructing harmonic coordinates on the surface of the graph of control function is formulated. The projection of these coordinates onto a physical domain produces an adaptive‐harmonic structured grid. A variational grid generator which can be used also in the case of unstructured grids with adaptation to a vector‐function is described in detail. The discrete functional has an infinite barrier on the boundary of the set of grids with all convex cells and this guarantees unfolded grid generation at every time step. Results of test computations are presented. Copyright © 2002 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.233</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>adaptive grid ; gas dynamics ; harmonic mapping ; high-order scheme ; supersonic flow ; unfolded grid</subject><ispartof>International journal for numerical methods in fluids, 2002-05, Vol.39 (1), p.1-22</ispartof><rights>Copyright © 2002 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3923-b3f703e3ba2861720a04c272b74aa7c85cbca212ef88aace4ceae5f7bb6a57163</citedby><cites>FETCH-LOGICAL-c3923-b3f703e3ba2861720a04c272b74aa7c85cbca212ef88aace4ceae5f7bb6a57163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.233$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.233$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Ivanenko, Sergey A.</creatorcontrib><creatorcontrib>Azarenok, Boris N.</creatorcontrib><title>Application of moving adaptive grids for numerical solution of 2D nonstationary problems in gas dynamics</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>Solution‐adaptive grid generation procedure is coupled with the Godunov‐type solver of the second‐order accuracy. Dynamically adaptive grids, clustered to singularities, allow to increase the accuracy of numerical solution. The theory of harmonic maps is used as a theoretical framework for grid generation. The problem of constructing harmonic coordinates on the surface of the graph of control function is formulated. The projection of these coordinates onto a physical domain produces an adaptive‐harmonic structured grid. A variational grid generator which can be used also in the case of unstructured grids with adaptation to a vector‐function is described in detail. The discrete functional has an infinite barrier on the boundary of the set of grids with all convex cells and this guarantees unfolded grid generation at every time step. Results of test computations are presented. Copyright © 2002 John Wiley &amp; Sons, Ltd.</description><subject>adaptive grid</subject><subject>gas dynamics</subject><subject>harmonic mapping</subject><subject>high-order scheme</subject><subject>supersonic flow</subject><subject>unfolded grid</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqN0DtPwzAUBWALgUR5iL_gCQaU4kcTJyNQWpCqIhAPicW6cZ1icOJgJ0D_PYEAGxLTXT4dnXsQ2qNkSAlhR4VdDBnna2hASSYiwhO-jgaECRoxktFNtBXCEyEkYykfoMfjurZGQWNchV2BS_dqqiWGBdSNedV46c0i4MJ5XLWl9p20ODjb_ng2xpWrQvMVAH6Fa-9yq8uATYWXEPBiVUFpVNhBGwXYoHe_7za6nZzdnJ5Hs8vpxenxLFI8YzzKeSEI1zwHliZUMAJkpJhguRgBCJXGKlfAKNNFmgIoPVIadFyIPE8gFjTh22i_z-2KvLQ6NLI0QWlrodKuDZKJJGYxof-BPEtGcQcPeqi8C8HrQtbelN2vkhL5ObnsJpfd5J087OWbsXr1F5OT2bjXUa9NaPT7rwb_LBPBRSzv51MZT66vxPzhTp7wDzmPkr8</recordid><startdate>20020510</startdate><enddate>20020510</enddate><creator>Ivanenko, Sergey A.</creator><creator>Azarenok, Boris N.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20020510</creationdate><title>Application of moving adaptive grids for numerical solution of 2D nonstationary problems in gas dynamics</title><author>Ivanenko, Sergey A. ; Azarenok, Boris N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3923-b3f703e3ba2861720a04c272b74aa7c85cbca212ef88aace4ceae5f7bb6a57163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>adaptive grid</topic><topic>gas dynamics</topic><topic>harmonic mapping</topic><topic>high-order scheme</topic><topic>supersonic flow</topic><topic>unfolded grid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanenko, Sergey A.</creatorcontrib><creatorcontrib>Azarenok, Boris N.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanenko, Sergey A.</au><au>Azarenok, Boris N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of moving adaptive grids for numerical solution of 2D nonstationary problems in gas dynamics</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2002-05-10</date><risdate>2002</risdate><volume>39</volume><issue>1</issue><spage>1</spage><epage>22</epage><pages>1-22</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><abstract>Solution‐adaptive grid generation procedure is coupled with the Godunov‐type solver of the second‐order accuracy. Dynamically adaptive grids, clustered to singularities, allow to increase the accuracy of numerical solution. The theory of harmonic maps is used as a theoretical framework for grid generation. The problem of constructing harmonic coordinates on the surface of the graph of control function is formulated. The projection of these coordinates onto a physical domain produces an adaptive‐harmonic structured grid. A variational grid generator which can be used also in the case of unstructured grids with adaptation to a vector‐function is described in detail. The discrete functional has an infinite barrier on the boundary of the set of grids with all convex cells and this guarantees unfolded grid generation at every time step. Results of test computations are presented. Copyright © 2002 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/fld.233</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0271-2091
ispartof International journal for numerical methods in fluids, 2002-05, Vol.39 (1), p.1-22
issn 0271-2091
1097-0363
language eng
recordid cdi_proquest_miscellaneous_27652501
source Wiley Online Library Journals Frontfile Complete
subjects adaptive grid
gas dynamics
harmonic mapping
high-order scheme
supersonic flow
unfolded grid
title Application of moving adaptive grids for numerical solution of 2D nonstationary problems in gas dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20moving%20adaptive%20grids%20for%20numerical%20solution%20of%202D%20nonstationary%20problems%20in%20gas%20dynamics&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Ivanenko,%20Sergey%20A.&rft.date=2002-05-10&rft.volume=39&rft.issue=1&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.issn=0271-2091&rft.eissn=1097-0363&rft_id=info:doi/10.1002/fld.233&rft_dat=%3Cproquest_cross%3E27652501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27639645&rft_id=info:pmid/&rfr_iscdi=true