Interaction and accumulation of glissile defect clusters near dislocations

Accumulation of nano-size prismatic defect clusters near slip-dislocations results from their mutual elastic interaction. We present here 3-D isotropic elasticity calculations for the interaction energy between radiation-induced nano-size prismatic loops and grown-in dislocation loops. The current t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2000, Vol.276 (1), p.166-177
Hauptverfasser: Ghoniem, N.M., Singh, B.N., Sun, L.Z., Dı́az de la Rubia, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 177
container_issue 1
container_start_page 166
container_title Journal of nuclear materials
container_volume 276
creator Ghoniem, N.M.
Singh, B.N.
Sun, L.Z.
Dı́az de la Rubia, T.
description Accumulation of nano-size prismatic defect clusters near slip-dislocations results from their mutual elastic interaction. We present here 3-D isotropic elasticity calculations for the interaction energy between radiation-induced nano-size prismatic loops and grown-in dislocation loops. The current treatment extends the work of Trinkaus et al. in two respects. First, a computational method for full 3-D analysis of interaction energies in bcc Fe and fcc Cu is developed. Second, the theoretical method of Kroupa is computationally implemented for rigorous calculations of force, torque and induced surface energy on defect clusters. It is shown that small clusters are trapped within a zone of ∼10 nm in bcc Fe, and ∼20 nm in fcc Cu at room temperature, in rough agreement with experimental observations. Clusters can be absorbed in the core of grown-in dislocations because of unbalanced moments, which provide sufficient energy for rotation of their Burgers vectors in a zone of 2–3 nm in Fe. Near the dislocation core (within a few nanometers), sessile defect clusters in Cu are shown to convert to a glissile configuration.
doi_str_mv 10.1016/S0022-3115(99)00176-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27646455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311599001762</els_id><sourcerecordid>27646455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-af5d365234dc93bfdeb35b9569ad44cec80a6ebce64b19f1e311b15a810e360d3</originalsourceid><addsrcrecordid>eNqFkEtLxDAQx4MouK5-BKEHET1Uk-axm5OI-ETwoJ5DOplKJNtqphX89nYf6NHTwPD7z-PH2KHgZ4ILc_7MeVWVUgh9Yu0p52JmymqLTcR8Jks1r_g2m_wiu2yP6J1zri3XE_Zw3_aYPfSxawvfhsIDDIsh-VWja4q3FIliwiJgg9AXkAYaE1S06HMRIqUOVjDts53GJ8KDTZ2y15vrl6u78vHp9v7q8rEEJWVf-kYHaXQlVQAr6yZgLXVttbE-KAUIc-4N1oBG1cI2Asera6H9XHCUhgc5ZcfruR-5-xyQereIBJiSb7EbyFUzo4zSegT1GoTcEWVs3EeOC5-_neBuac6tzLmlFmetW5lz1Zg72izwBD412bcQ6S9cKbO8f8ou1hiOz35FzI4gYgsYYh5NudDFfxb9AJlSg1o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27646455</pqid></control><display><type>article</type><title>Interaction and accumulation of glissile defect clusters near dislocations</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Ghoniem, N.M. ; Singh, B.N. ; Sun, L.Z. ; Dı́az de la Rubia, T.</creator><creatorcontrib>Ghoniem, N.M. ; Singh, B.N. ; Sun, L.Z. ; Dı́az de la Rubia, T.</creatorcontrib><description>Accumulation of nano-size prismatic defect clusters near slip-dislocations results from their mutual elastic interaction. We present here 3-D isotropic elasticity calculations for the interaction energy between radiation-induced nano-size prismatic loops and grown-in dislocation loops. The current treatment extends the work of Trinkaus et al. in two respects. First, a computational method for full 3-D analysis of interaction energies in bcc Fe and fcc Cu is developed. Second, the theoretical method of Kroupa is computationally implemented for rigorous calculations of force, torque and induced surface energy on defect clusters. It is shown that small clusters are trapped within a zone of ∼10 nm in bcc Fe, and ∼20 nm in fcc Cu at room temperature, in rough agreement with experimental observations. Clusters can be absorbed in the core of grown-in dislocations because of unbalanced moments, which provide sufficient energy for rotation of their Burgers vectors in a zone of 2–3 nm in Fe. Near the dislocation core (within a few nanometers), sessile defect clusters in Cu are shown to convert to a glissile configuration.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/S0022-3115(99)00176-2</identifier><identifier>CODEN: JNUMAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Controled nuclear fusion plants ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Installations for energy generation and conversion: thermal and electrical energy</subject><ispartof>Journal of nuclear materials, 2000, Vol.276 (1), p.166-177</ispartof><rights>2000 Elsevier Science B.V.</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-af5d365234dc93bfdeb35b9569ad44cec80a6ebce64b19f1e311b15a810e360d3</citedby><cites>FETCH-LOGICAL-c433t-af5d365234dc93bfdeb35b9569ad44cec80a6ebce64b19f1e311b15a810e360d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022311599001762$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,4010,4036,4037,23909,23910,25118,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1246652$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghoniem, N.M.</creatorcontrib><creatorcontrib>Singh, B.N.</creatorcontrib><creatorcontrib>Sun, L.Z.</creatorcontrib><creatorcontrib>Dı́az de la Rubia, T.</creatorcontrib><title>Interaction and accumulation of glissile defect clusters near dislocations</title><title>Journal of nuclear materials</title><description>Accumulation of nano-size prismatic defect clusters near slip-dislocations results from their mutual elastic interaction. We present here 3-D isotropic elasticity calculations for the interaction energy between radiation-induced nano-size prismatic loops and grown-in dislocation loops. The current treatment extends the work of Trinkaus et al. in two respects. First, a computational method for full 3-D analysis of interaction energies in bcc Fe and fcc Cu is developed. Second, the theoretical method of Kroupa is computationally implemented for rigorous calculations of force, torque and induced surface energy on defect clusters. It is shown that small clusters are trapped within a zone of ∼10 nm in bcc Fe, and ∼20 nm in fcc Cu at room temperature, in rough agreement with experimental observations. Clusters can be absorbed in the core of grown-in dislocations because of unbalanced moments, which provide sufficient energy for rotation of their Burgers vectors in a zone of 2–3 nm in Fe. Near the dislocation core (within a few nanometers), sessile defect clusters in Cu are shown to convert to a glissile configuration.</description><subject>Applied sciences</subject><subject>Controled nuclear fusion plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAQx4MouK5-BKEHET1Uk-axm5OI-ETwoJ5DOplKJNtqphX89nYf6NHTwPD7z-PH2KHgZ4ILc_7MeVWVUgh9Yu0p52JmymqLTcR8Jks1r_g2m_wiu2yP6J1zri3XE_Zw3_aYPfSxawvfhsIDDIsh-VWja4q3FIliwiJgg9AXkAYaE1S06HMRIqUOVjDts53GJ8KDTZ2y15vrl6u78vHp9v7q8rEEJWVf-kYHaXQlVQAr6yZgLXVttbE-KAUIc-4N1oBG1cI2Asera6H9XHCUhgc5ZcfruR-5-xyQereIBJiSb7EbyFUzo4zSegT1GoTcEWVs3EeOC5-_neBuac6tzLmlFmetW5lz1Zg72izwBD412bcQ6S9cKbO8f8ou1hiOz35FzI4gYgsYYh5NudDFfxb9AJlSg1o</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Ghoniem, N.M.</creator><creator>Singh, B.N.</creator><creator>Sun, L.Z.</creator><creator>Dı́az de la Rubia, T.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>2000</creationdate><title>Interaction and accumulation of glissile defect clusters near dislocations</title><author>Ghoniem, N.M. ; Singh, B.N. ; Sun, L.Z. ; Dı́az de la Rubia, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-af5d365234dc93bfdeb35b9569ad44cec80a6ebce64b19f1e311b15a810e360d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Controled nuclear fusion plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghoniem, N.M.</creatorcontrib><creatorcontrib>Singh, B.N.</creatorcontrib><creatorcontrib>Sun, L.Z.</creatorcontrib><creatorcontrib>Dı́az de la Rubia, T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghoniem, N.M.</au><au>Singh, B.N.</au><au>Sun, L.Z.</au><au>Dı́az de la Rubia, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction and accumulation of glissile defect clusters near dislocations</atitle><jtitle>Journal of nuclear materials</jtitle><date>2000</date><risdate>2000</risdate><volume>276</volume><issue>1</issue><spage>166</spage><epage>177</epage><pages>166-177</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><coden>JNUMAM</coden><abstract>Accumulation of nano-size prismatic defect clusters near slip-dislocations results from their mutual elastic interaction. We present here 3-D isotropic elasticity calculations for the interaction energy between radiation-induced nano-size prismatic loops and grown-in dislocation loops. The current treatment extends the work of Trinkaus et al. in two respects. First, a computational method for full 3-D analysis of interaction energies in bcc Fe and fcc Cu is developed. Second, the theoretical method of Kroupa is computationally implemented for rigorous calculations of force, torque and induced surface energy on defect clusters. It is shown that small clusters are trapped within a zone of ∼10 nm in bcc Fe, and ∼20 nm in fcc Cu at room temperature, in rough agreement with experimental observations. Clusters can be absorbed in the core of grown-in dislocations because of unbalanced moments, which provide sufficient energy for rotation of their Burgers vectors in a zone of 2–3 nm in Fe. Near the dislocation core (within a few nanometers), sessile defect clusters in Cu are shown to convert to a glissile configuration.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0022-3115(99)00176-2</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2000, Vol.276 (1), p.166-177
issn 0022-3115
1873-4820
language eng
recordid cdi_proquest_miscellaneous_27646455
source ScienceDirect Freedom Collection (Elsevier)
subjects Applied sciences
Controled nuclear fusion plants
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fission nuclear power plants
Installations for energy generation and conversion: thermal and electrical energy
title Interaction and accumulation of glissile defect clusters near dislocations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A34%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20and%20accumulation%20of%20glissile%20defect%20clusters%20near%20dislocations&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Ghoniem,%20N.M.&rft.date=2000&rft.volume=276&rft.issue=1&rft.spage=166&rft.epage=177&rft.pages=166-177&rft.issn=0022-3115&rft.eissn=1873-4820&rft.coden=JNUMAM&rft_id=info:doi/10.1016/S0022-3115(99)00176-2&rft_dat=%3Cproquest_cross%3E27646455%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27646455&rft_id=info:pmid/&rft_els_id=S0022311599001762&rfr_iscdi=true