Extending Photocatalyst Activity through Choice of Electron Donor

Sacrificial additives are commonly employed in photoredox catalysis as a convenient source of electrons, but what occurs after electron transfer is often overlooked. Tertiary alkylamines initially form radical cations following electron transfer, which readily deprotonate to form strongly reducing,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of organic chemistry 2023-05, Vol.88 (10), p.6445-6453
Hauptverfasser: Draper, Felicity, Doeven, Egan H., Adcock, Jacqui L., Francis, Paul S., Connell, Timothy U.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6453
container_issue 10
container_start_page 6445
container_title Journal of organic chemistry
container_volume 88
creator Draper, Felicity
Doeven, Egan H.
Adcock, Jacqui L.
Francis, Paul S.
Connell, Timothy U.
description Sacrificial additives are commonly employed in photoredox catalysis as a convenient source of electrons, but what occurs after electron transfer is often overlooked. Tertiary alkylamines initially form radical cations following electron transfer, which readily deprotonate to form strongly reducing, neutral α-amino radicals. Similarly, the oxalate radical anion (C2O4 •–) rapidly decomposes to form CO2 •– (E 0 ≈ −2.2 V vs SCE). We show that not only are these reactive intermediates formed under photoredox conditions, but they can also impact the desired photochemistry, both positively and negatively. Photoredox systems using oxalate as an electron donor are able to engage substrates with greater energy demands, extending reactivity past the energy limits of single and multiphoton transition metal catalysts. Furthermore, oxalate offers better chemoselectivity than the commonly employed triethylamine when reducing substrates with moderate energy requirements.
doi_str_mv 10.1021/acs.joc.2c02460
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2764444015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2764444015</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-8d13c6525dd93b3fee2c67db3c24627d2028c71417988ca74b051aad126572543</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqUws6GMSCitfY6ddKxK-ZAqwQCz5dhOkyqNi-0g-u8xSmHjllue99Xdg9A1wVOCgcyk8tOtVVNQGDKOT9CYMMApn-PsFI0xBkgpcDpCF95vcRzG2DkaUc5hDhyP0WL1FUynm26TvNY2WCWDbA8-JAsVms8mHJJQO9tv6mRZ20aZxFbJqjUqONsl97az7hKdVbL15uq4J-j9YfW2fErXL4_Py8U6lZTSkBaaUMUZMK3ntKSVMaB4rkuq4uGQa8BQqJxkJJ8XhZJ5VmJGpNQEOMuBZXSCbofevbMfvfFB7BqvTNvKztjeC8h5FgcTFtHZgCpnvXemEnvX7KQ7CILFjzcRvYnoTRy9xcTNsbwvd0b_8b-iInA3AEOyd1389d-6bwZYdz8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2764444015</pqid></control><display><type>article</type><title>Extending Photocatalyst Activity through Choice of Electron Donor</title><source>American Chemical Society Journals</source><creator>Draper, Felicity ; Doeven, Egan H. ; Adcock, Jacqui L. ; Francis, Paul S. ; Connell, Timothy U.</creator><creatorcontrib>Draper, Felicity ; Doeven, Egan H. ; Adcock, Jacqui L. ; Francis, Paul S. ; Connell, Timothy U.</creatorcontrib><description>Sacrificial additives are commonly employed in photoredox catalysis as a convenient source of electrons, but what occurs after electron transfer is often overlooked. Tertiary alkylamines initially form radical cations following electron transfer, which readily deprotonate to form strongly reducing, neutral α-amino radicals. Similarly, the oxalate radical anion (C2O4 •–) rapidly decomposes to form CO2 •– (E 0 ≈ −2.2 V vs SCE). We show that not only are these reactive intermediates formed under photoredox conditions, but they can also impact the desired photochemistry, both positively and negatively. Photoredox systems using oxalate as an electron donor are able to engage substrates with greater energy demands, extending reactivity past the energy limits of single and multiphoton transition metal catalysts. Furthermore, oxalate offers better chemoselectivity than the commonly employed triethylamine when reducing substrates with moderate energy requirements.</description><identifier>ISSN: 0022-3263</identifier><identifier>EISSN: 1520-6904</identifier><identifier>DOI: 10.1021/acs.joc.2c02460</identifier><identifier>PMID: 36629260</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of organic chemistry, 2023-05, Vol.88 (10), p.6445-6453</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-8d13c6525dd93b3fee2c67db3c24627d2028c71417988ca74b051aad126572543</citedby><cites>FETCH-LOGICAL-a333t-8d13c6525dd93b3fee2c67db3c24627d2028c71417988ca74b051aad126572543</cites><orcidid>0000-0002-6142-3854 ; 0000-0003-4165-6922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.joc.2c02460$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.joc.2c02460$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36629260$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Draper, Felicity</creatorcontrib><creatorcontrib>Doeven, Egan H.</creatorcontrib><creatorcontrib>Adcock, Jacqui L.</creatorcontrib><creatorcontrib>Francis, Paul S.</creatorcontrib><creatorcontrib>Connell, Timothy U.</creatorcontrib><title>Extending Photocatalyst Activity through Choice of Electron Donor</title><title>Journal of organic chemistry</title><addtitle>J. Org. Chem</addtitle><description>Sacrificial additives are commonly employed in photoredox catalysis as a convenient source of electrons, but what occurs after electron transfer is often overlooked. Tertiary alkylamines initially form radical cations following electron transfer, which readily deprotonate to form strongly reducing, neutral α-amino radicals. Similarly, the oxalate radical anion (C2O4 •–) rapidly decomposes to form CO2 •– (E 0 ≈ −2.2 V vs SCE). We show that not only are these reactive intermediates formed under photoredox conditions, but they can also impact the desired photochemistry, both positively and negatively. Photoredox systems using oxalate as an electron donor are able to engage substrates with greater energy demands, extending reactivity past the energy limits of single and multiphoton transition metal catalysts. Furthermore, oxalate offers better chemoselectivity than the commonly employed triethylamine when reducing substrates with moderate energy requirements.</description><issn>0022-3263</issn><issn>1520-6904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EoqUws6GMSCitfY6ddKxK-ZAqwQCz5dhOkyqNi-0g-u8xSmHjllue99Xdg9A1wVOCgcyk8tOtVVNQGDKOT9CYMMApn-PsFI0xBkgpcDpCF95vcRzG2DkaUc5hDhyP0WL1FUynm26TvNY2WCWDbA8-JAsVms8mHJJQO9tv6mRZ20aZxFbJqjUqONsl97az7hKdVbL15uq4J-j9YfW2fErXL4_Py8U6lZTSkBaaUMUZMK3ntKSVMaB4rkuq4uGQa8BQqJxkJJ8XhZJ5VmJGpNQEOMuBZXSCbofevbMfvfFB7BqvTNvKztjeC8h5FgcTFtHZgCpnvXemEnvX7KQ7CILFjzcRvYnoTRy9xcTNsbwvd0b_8b-iInA3AEOyd1389d-6bwZYdz8</recordid><startdate>20230519</startdate><enddate>20230519</enddate><creator>Draper, Felicity</creator><creator>Doeven, Egan H.</creator><creator>Adcock, Jacqui L.</creator><creator>Francis, Paul S.</creator><creator>Connell, Timothy U.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6142-3854</orcidid><orcidid>https://orcid.org/0000-0003-4165-6922</orcidid></search><sort><creationdate>20230519</creationdate><title>Extending Photocatalyst Activity through Choice of Electron Donor</title><author>Draper, Felicity ; Doeven, Egan H. ; Adcock, Jacqui L. ; Francis, Paul S. ; Connell, Timothy U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-8d13c6525dd93b3fee2c67db3c24627d2028c71417988ca74b051aad126572543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Draper, Felicity</creatorcontrib><creatorcontrib>Doeven, Egan H.</creatorcontrib><creatorcontrib>Adcock, Jacqui L.</creatorcontrib><creatorcontrib>Francis, Paul S.</creatorcontrib><creatorcontrib>Connell, Timothy U.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of organic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Draper, Felicity</au><au>Doeven, Egan H.</au><au>Adcock, Jacqui L.</au><au>Francis, Paul S.</au><au>Connell, Timothy U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extending Photocatalyst Activity through Choice of Electron Donor</atitle><jtitle>Journal of organic chemistry</jtitle><addtitle>J. Org. Chem</addtitle><date>2023-05-19</date><risdate>2023</risdate><volume>88</volume><issue>10</issue><spage>6445</spage><epage>6453</epage><pages>6445-6453</pages><issn>0022-3263</issn><eissn>1520-6904</eissn><abstract>Sacrificial additives are commonly employed in photoredox catalysis as a convenient source of electrons, but what occurs after electron transfer is often overlooked. Tertiary alkylamines initially form radical cations following electron transfer, which readily deprotonate to form strongly reducing, neutral α-amino radicals. Similarly, the oxalate radical anion (C2O4 •–) rapidly decomposes to form CO2 •– (E 0 ≈ −2.2 V vs SCE). We show that not only are these reactive intermediates formed under photoredox conditions, but they can also impact the desired photochemistry, both positively and negatively. Photoredox systems using oxalate as an electron donor are able to engage substrates with greater energy demands, extending reactivity past the energy limits of single and multiphoton transition metal catalysts. Furthermore, oxalate offers better chemoselectivity than the commonly employed triethylamine when reducing substrates with moderate energy requirements.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36629260</pmid><doi>10.1021/acs.joc.2c02460</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6142-3854</orcidid><orcidid>https://orcid.org/0000-0003-4165-6922</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3263
ispartof Journal of organic chemistry, 2023-05, Vol.88 (10), p.6445-6453
issn 0022-3263
1520-6904
language eng
recordid cdi_proquest_miscellaneous_2764444015
source American Chemical Society Journals
title Extending Photocatalyst Activity through Choice of Electron Donor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A44%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extending%20Photocatalyst%20Activity%20through%20Choice%20of%20Electron%20Donor&rft.jtitle=Journal%20of%20organic%20chemistry&rft.au=Draper,%20Felicity&rft.date=2023-05-19&rft.volume=88&rft.issue=10&rft.spage=6445&rft.epage=6453&rft.pages=6445-6453&rft.issn=0022-3263&rft.eissn=1520-6904&rft_id=info:doi/10.1021/acs.joc.2c02460&rft_dat=%3Cproquest_cross%3E2764444015%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2764444015&rft_id=info:pmid/36629260&rfr_iscdi=true