Survey on sentiment analysis: evolution of research methods and topics
Sentiment analysis, one of the research hotspots in the natural language processing field, has attracted the attention of researchers, and research papers on the field are increasingly published. Many literature reviews on sentiment analysis involving techniques, methods, and applications have been...
Gespeichert in:
Veröffentlicht in: | The Artificial intelligence review 2023-08, Vol.56 (8), p.8469-8510 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8510 |
---|---|
container_issue | 8 |
container_start_page | 8469 |
container_title | The Artificial intelligence review |
container_volume | 56 |
creator | Cui, Jingfeng Wang, Zhaoxia Ho, Seng-Beng Cambria, Erik |
description | Sentiment analysis, one of the research hotspots in the natural language processing field, has attracted the attention of researchers, and research papers on the field are increasingly published. Many literature reviews on sentiment analysis involving techniques, methods, and applications have been produced using different survey methodologies and tools, but there has not been a survey dedicated to the evolution of research methods and topics of sentiment analysis. There have also been few survey works leveraging keyword co-occurrence on sentiment analysis. Therefore, this study presents a survey of sentiment analysis focusing on the evolution of research methods and topics. It incorporates keyword co-occurrence analysis with a community detection algorithm. This survey not only compares and analyzes the connections between research methods and topics over the past two decades but also uncovers the hotspots and trends over time, thus providing guidance for researchers. Furthermore, this paper presents broad practical insights into the methods and topics of sentiment analysis, while also identifying technical directions, limitations, and future work. |
doi_str_mv | 10.1007/s10462-022-10386-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2764443836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A754967853</galeid><sourcerecordid>A754967853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-130d48519449efe4472b70e2d6a4f8eee51334c8675326306684b53f1a0bcd893</originalsourceid><addsrcrecordid>eNp9kctKxTAQhoMoery8gAspuHFTzT2pOxFvILhQ1yEnnWqkbY5Je-D49EbrBVzIQAZmvn9mwo_QPsHHBGN1kgjmkpaY0pJgpmX5toZmRChWqlxfRzNMZVVSTckW2k7pBWMsKGebaItJSTWjeoYu78e4hFUR-iJBP_guP4XtbbtKPp0WsAztOPjcDU0RIYGN7rnoYHgOdcpcXQxh4V3aRRuNbRPsfeUd9Hh58XB-Xd7eXd2cn92Wjgs9lIThmmtBKs4raIBzRecKA62l5Y0GAEEY405LJRiVDEup-Vywhlg8d7Wu2A46muYuYngdIQ2m88lB29oewpgMVZJzzjSTGT38g76EMeafZUrTqlIyb8jU8UQ92RaM75swROty1NB5F3pofK6fKcErqbT4ENBJ4GJIKUJjFtF3Nq4MwebDFjPZYrIt5tMW85ZFB1-3jPMO6h_Jtw8ZYBOQcqt_gvh77D9j3wEL_Ja7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829976263</pqid></control><display><type>article</type><title>Survey on sentiment analysis: evolution of research methods and topics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cui, Jingfeng ; Wang, Zhaoxia ; Ho, Seng-Beng ; Cambria, Erik</creator><creatorcontrib>Cui, Jingfeng ; Wang, Zhaoxia ; Ho, Seng-Beng ; Cambria, Erik</creatorcontrib><description>Sentiment analysis, one of the research hotspots in the natural language processing field, has attracted the attention of researchers, and research papers on the field are increasingly published. Many literature reviews on sentiment analysis involving techniques, methods, and applications have been produced using different survey methodologies and tools, but there has not been a survey dedicated to the evolution of research methods and topics of sentiment analysis. There have also been few survey works leveraging keyword co-occurrence on sentiment analysis. Therefore, this study presents a survey of sentiment analysis focusing on the evolution of research methods and topics. It incorporates keyword co-occurrence analysis with a community detection algorithm. This survey not only compares and analyzes the connections between research methods and topics over the past two decades but also uncovers the hotspots and trends over time, thus providing guidance for researchers. Furthermore, this paper presents broad practical insights into the methods and topics of sentiment analysis, while also identifying technical directions, limitations, and future work.</description><identifier>ISSN: 0269-2821</identifier><identifier>EISSN: 1573-7462</identifier><identifier>DOI: 10.1007/s10462-022-10386-z</identifier><identifier>PMID: 36628328</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Artificial Intelligence ; Computational linguistics ; Computer Science ; Data mining ; Emotions ; Evolution ; Forecasts and trends ; Informetrics ; Keywords ; Language processing ; Literature reviews ; Methodology ; Natural language interfaces ; Natural language processing ; Research methodology ; Researchers ; Sentiment analysis ; Social networks ; Trends ; User generated content</subject><ispartof>The Artificial intelligence review, 2023-08, Vol.56 (8), p.8469-8510</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-130d48519449efe4472b70e2d6a4f8eee51334c8675326306684b53f1a0bcd893</citedby><cites>FETCH-LOGICAL-c458t-130d48519449efe4472b70e2d6a4f8eee51334c8675326306684b53f1a0bcd893</cites><orcidid>0000-0002-3030-1280 ; 0000-0003-4839-1509 ; 0000-0001-7674-5488 ; 0000-0001-8306-0727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10462-022-10386-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10462-022-10386-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36628328$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Jingfeng</creatorcontrib><creatorcontrib>Wang, Zhaoxia</creatorcontrib><creatorcontrib>Ho, Seng-Beng</creatorcontrib><creatorcontrib>Cambria, Erik</creatorcontrib><title>Survey on sentiment analysis: evolution of research methods and topics</title><title>The Artificial intelligence review</title><addtitle>Artif Intell Rev</addtitle><addtitle>Artif Intell Rev</addtitle><description>Sentiment analysis, one of the research hotspots in the natural language processing field, has attracted the attention of researchers, and research papers on the field are increasingly published. Many literature reviews on sentiment analysis involving techniques, methods, and applications have been produced using different survey methodologies and tools, but there has not been a survey dedicated to the evolution of research methods and topics of sentiment analysis. There have also been few survey works leveraging keyword co-occurrence on sentiment analysis. Therefore, this study presents a survey of sentiment analysis focusing on the evolution of research methods and topics. It incorporates keyword co-occurrence analysis with a community detection algorithm. This survey not only compares and analyzes the connections between research methods and topics over the past two decades but also uncovers the hotspots and trends over time, thus providing guidance for researchers. Furthermore, this paper presents broad practical insights into the methods and topics of sentiment analysis, while also identifying technical directions, limitations, and future work.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computational linguistics</subject><subject>Computer Science</subject><subject>Data mining</subject><subject>Emotions</subject><subject>Evolution</subject><subject>Forecasts and trends</subject><subject>Informetrics</subject><subject>Keywords</subject><subject>Language processing</subject><subject>Literature reviews</subject><subject>Methodology</subject><subject>Natural language interfaces</subject><subject>Natural language processing</subject><subject>Research methodology</subject><subject>Researchers</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><subject>Trends</subject><subject>User generated content</subject><issn>0269-2821</issn><issn>1573-7462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kctKxTAQhoMoery8gAspuHFTzT2pOxFvILhQ1yEnnWqkbY5Je-D49EbrBVzIQAZmvn9mwo_QPsHHBGN1kgjmkpaY0pJgpmX5toZmRChWqlxfRzNMZVVSTckW2k7pBWMsKGebaItJSTWjeoYu78e4hFUR-iJBP_guP4XtbbtKPp0WsAztOPjcDU0RIYGN7rnoYHgOdcpcXQxh4V3aRRuNbRPsfeUd9Hh58XB-Xd7eXd2cn92Wjgs9lIThmmtBKs4raIBzRecKA62l5Y0GAEEY405LJRiVDEup-Vywhlg8d7Wu2A46muYuYngdIQ2m88lB29oewpgMVZJzzjSTGT38g76EMeafZUrTqlIyb8jU8UQ92RaM75swROty1NB5F3pofK6fKcErqbT4ENBJ4GJIKUJjFtF3Nq4MwebDFjPZYrIt5tMW85ZFB1-3jPMO6h_Jtw8ZYBOQcqt_gvh77D9j3wEL_Ja7</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Cui, Jingfeng</creator><creator>Wang, Zhaoxia</creator><creator>Ho, Seng-Beng</creator><creator>Cambria, Erik</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3030-1280</orcidid><orcidid>https://orcid.org/0000-0003-4839-1509</orcidid><orcidid>https://orcid.org/0000-0001-7674-5488</orcidid><orcidid>https://orcid.org/0000-0001-8306-0727</orcidid></search><sort><creationdate>20230801</creationdate><title>Survey on sentiment analysis: evolution of research methods and topics</title><author>Cui, Jingfeng ; Wang, Zhaoxia ; Ho, Seng-Beng ; Cambria, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-130d48519449efe4472b70e2d6a4f8eee51334c8675326306684b53f1a0bcd893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computational linguistics</topic><topic>Computer Science</topic><topic>Data mining</topic><topic>Emotions</topic><topic>Evolution</topic><topic>Forecasts and trends</topic><topic>Informetrics</topic><topic>Keywords</topic><topic>Language processing</topic><topic>Literature reviews</topic><topic>Methodology</topic><topic>Natural language interfaces</topic><topic>Natural language processing</topic><topic>Research methodology</topic><topic>Researchers</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><topic>Trends</topic><topic>User generated content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Jingfeng</creatorcontrib><creatorcontrib>Wang, Zhaoxia</creatorcontrib><creatorcontrib>Ho, Seng-Beng</creatorcontrib><creatorcontrib>Cambria, Erik</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>The Artificial intelligence review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Jingfeng</au><au>Wang, Zhaoxia</au><au>Ho, Seng-Beng</au><au>Cambria, Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Survey on sentiment analysis: evolution of research methods and topics</atitle><jtitle>The Artificial intelligence review</jtitle><stitle>Artif Intell Rev</stitle><addtitle>Artif Intell Rev</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>56</volume><issue>8</issue><spage>8469</spage><epage>8510</epage><pages>8469-8510</pages><issn>0269-2821</issn><eissn>1573-7462</eissn><abstract>Sentiment analysis, one of the research hotspots in the natural language processing field, has attracted the attention of researchers, and research papers on the field are increasingly published. Many literature reviews on sentiment analysis involving techniques, methods, and applications have been produced using different survey methodologies and tools, but there has not been a survey dedicated to the evolution of research methods and topics of sentiment analysis. There have also been few survey works leveraging keyword co-occurrence on sentiment analysis. Therefore, this study presents a survey of sentiment analysis focusing on the evolution of research methods and topics. It incorporates keyword co-occurrence analysis with a community detection algorithm. This survey not only compares and analyzes the connections between research methods and topics over the past two decades but also uncovers the hotspots and trends over time, thus providing guidance for researchers. Furthermore, this paper presents broad practical insights into the methods and topics of sentiment analysis, while also identifying technical directions, limitations, and future work.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>36628328</pmid><doi>10.1007/s10462-022-10386-z</doi><tpages>42</tpages><orcidid>https://orcid.org/0000-0002-3030-1280</orcidid><orcidid>https://orcid.org/0000-0003-4839-1509</orcidid><orcidid>https://orcid.org/0000-0001-7674-5488</orcidid><orcidid>https://orcid.org/0000-0001-8306-0727</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-2821 |
ispartof | The Artificial intelligence review, 2023-08, Vol.56 (8), p.8469-8510 |
issn | 0269-2821 1573-7462 |
language | eng |
recordid | cdi_proquest_miscellaneous_2764443836 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Artificial Intelligence Computational linguistics Computer Science Data mining Emotions Evolution Forecasts and trends Informetrics Keywords Language processing Literature reviews Methodology Natural language interfaces Natural language processing Research methodology Researchers Sentiment analysis Social networks Trends User generated content |
title | Survey on sentiment analysis: evolution of research methods and topics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A01%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Survey%20on%20sentiment%20analysis:%20evolution%20of%20research%20methods%20and%20topics&rft.jtitle=The%20Artificial%20intelligence%20review&rft.au=Cui,%20Jingfeng&rft.date=2023-08-01&rft.volume=56&rft.issue=8&rft.spage=8469&rft.epage=8510&rft.pages=8469-8510&rft.issn=0269-2821&rft.eissn=1573-7462&rft_id=info:doi/10.1007/s10462-022-10386-z&rft_dat=%3Cgale_proqu%3EA754967853%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829976263&rft_id=info:pmid/36628328&rft_galeid=A754967853&rfr_iscdi=true |