Plasma-induced graft polymerization of poly(ethylene glycol) methyl ether methacrylate on poly(tetrafluoroethylene) films for reduction in protein adsorption
Argon plasma-induced graft polymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA) on H 2 plasma-pretreated poly(tetrafluoroethylene) (PTFE) films was carried out to render the PTFE surfaces hydrophilic and protein-repellent. The surface microstructure and composition of the PEGMA...
Gespeichert in:
Veröffentlicht in: | Surface & coatings technology 2002-01, Vol.149 (2), p.119-128 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Argon plasma-induced graft polymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA) on H
2 plasma-pretreated poly(tetrafluoroethylene) (PTFE) films was carried out to render the PTFE surfaces hydrophilic and protein-repellent. The surface microstructure and composition of the PEGMA graft-polymerized PTFE surfaces from plasma induction were characterized by water contact angle, X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) measurements. The extent of cross-linking in the plasma-polymerized PEGMA (pp-PEGMA) was estimated by gel fraction determination. In general, an appropriate RF power of approximately 15 W and glow discharge time of 60 s for polymerization produced a high graft yield of pp-PEGMA on the H
2 plasma-pretreated PTFE surface (the pp-PEGMA-g-PTFE surface). The hydrophilicity of the PTFE surfaces was greatly enhanced by the presence of pp-PEGMA. The PTFE surface with a high density of the grafted pp-PEGMA was very effective in preventing bovine serum albumin (BSA) protein adsorption. |
---|---|
ISSN: | 0257-8972 1879-3347 |
DOI: | 10.1016/S0257-8972(01)01490-6 |