MHC II immunogenicity shapes the neoepitope landscape in human tumors

Despite advances in predicting physical peptide-major histocompatibility complex I (pMHC I) binding, it remains challenging to identify functionally immunogenic neoepitopes, especially for MHC II. By using the results of >36,000 immunogenicity assay, we developed a method to identify pMHC whose s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 2023-02, Vol.55 (2), p.221-231
Hauptverfasser: Kim, Jeong Yeon, Cha, Hongui, Kim, Kyeonghui, Sung, Changhwan, An, Jinhyeon, Bang, Hyoeun, Kim, Hyungjoo, Yang, Jin Ok, Chang, Suhwan, Shin, Incheol, Noh, Seung-Jae, Shin, Inkyung, Cho, Dae-Yeon, Lee, Se-Hoon, Choi, Jung Kyoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 231
container_issue 2
container_start_page 221
container_title Nature genetics
container_volume 55
creator Kim, Jeong Yeon
Cha, Hongui
Kim, Kyeonghui
Sung, Changhwan
An, Jinhyeon
Bang, Hyoeun
Kim, Hyungjoo
Yang, Jin Ok
Chang, Suhwan
Shin, Incheol
Noh, Seung-Jae
Shin, Inkyung
Cho, Dae-Yeon
Lee, Se-Hoon
Choi, Jung Kyoon
description Despite advances in predicting physical peptide-major histocompatibility complex I (pMHC I) binding, it remains challenging to identify functionally immunogenic neoepitopes, especially for MHC II. By using the results of >36,000 immunogenicity assay, we developed a method to identify pMHC whose structural alignment facilitates T cell reaction. Our method predicted neoepitopes for MHC II and MHC I that were responsive to checkpoint blockade when applied to >1,200 samples of various tumor types. To investigate selection by spontaneous immunity at the single epitope level, we analyzed the frequency spectrum of >25 million mutations in >9,000 treatment-naive tumors with >100 immune phenotypes. MHC II immunogenicity specifically lowered variant frequencies in tumors under high immune pressure, particularly with high TCR clonality and MHC II expression. A similar trend was shown for MHC I neoepitopes, but only in particular tissue types. In summary, we report immune selection imposed by MHC II-restricted natural or therapeutic T cell reactivity. DeepNeo identifies major histocompatibility complex (MHC) I or MHC II neoepitopes that are immunogenically compatible with the T cell repertoire. It can predict neoepitopes most likely to be depleted through spontaneous immunity or through immune checkpoint blockade from untreated and immunotherapy-treated tumor datasets.
doi_str_mv 10.1038/s41588-022-01273-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2763333487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2763333487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-2ab6f29b70ec7e86ff7bfbf4e922344af4696392499cc4782b08e77cfad3a7143</originalsourceid><addsrcrecordid>eNp9kLlOAzEQhi0EIuF4AQpkiYZmwcfE9pYoChApiAZqy-uMyUbZg_VukbfHIRwSBdN4pPnm9-gj5IKzG86kuY3AJ8ZkTIiMcaFltj0gYz4BlXHNzWHqmeIZMKlG5CTGNWMcgJljMpJKCZAwGZPZ0-OUzue0rKqhbt6wLn3Zb2lcuRYj7VdIa2ywLfumRbpx9TL6NKFlTVdD5WraD1XTxTNyFNwm4vnXe0pe72cv08ds8fwwn94tMi_1pM-EK1QQeaEZeo1GhaCLUATAXAgJ4AKoXMlcQJ57D9qIghnU2ge3lE5zkKfkep_bds37gLG3VRk9btJh2AzRCq1kKjA6oVd_0HUzdHW6LlFaMwMCdpTYU75rYuww2LYrK9dtLWd2J9nuJdsk2X5Kttu0dPkVPRQVLn9Wvq0mQO6BmEb1G3a_f_8T-wGUjYcS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777084247</pqid></control><display><type>article</type><title>MHC II immunogenicity shapes the neoepitope landscape in human tumors</title><source>MEDLINE</source><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Kim, Jeong Yeon ; Cha, Hongui ; Kim, Kyeonghui ; Sung, Changhwan ; An, Jinhyeon ; Bang, Hyoeun ; Kim, Hyungjoo ; Yang, Jin Ok ; Chang, Suhwan ; Shin, Incheol ; Noh, Seung-Jae ; Shin, Inkyung ; Cho, Dae-Yeon ; Lee, Se-Hoon ; Choi, Jung Kyoon</creator><creatorcontrib>Kim, Jeong Yeon ; Cha, Hongui ; Kim, Kyeonghui ; Sung, Changhwan ; An, Jinhyeon ; Bang, Hyoeun ; Kim, Hyungjoo ; Yang, Jin Ok ; Chang, Suhwan ; Shin, Incheol ; Noh, Seung-Jae ; Shin, Inkyung ; Cho, Dae-Yeon ; Lee, Se-Hoon ; Choi, Jung Kyoon</creatorcontrib><description>Despite advances in predicting physical peptide-major histocompatibility complex I (pMHC I) binding, it remains challenging to identify functionally immunogenic neoepitopes, especially for MHC II. By using the results of &gt;36,000 immunogenicity assay, we developed a method to identify pMHC whose structural alignment facilitates T cell reaction. Our method predicted neoepitopes for MHC II and MHC I that were responsive to checkpoint blockade when applied to &gt;1,200 samples of various tumor types. To investigate selection by spontaneous immunity at the single epitope level, we analyzed the frequency spectrum of &gt;25 million mutations in &gt;9,000 treatment-naive tumors with &gt;100 immune phenotypes. MHC II immunogenicity specifically lowered variant frequencies in tumors under high immune pressure, particularly with high TCR clonality and MHC II expression. A similar trend was shown for MHC I neoepitopes, but only in particular tissue types. In summary, we report immune selection imposed by MHC II-restricted natural or therapeutic T cell reactivity. DeepNeo identifies major histocompatibility complex (MHC) I or MHC II neoepitopes that are immunogenically compatible with the T cell repertoire. It can predict neoepitopes most likely to be depleted through spontaneous immunity or through immune checkpoint blockade from untreated and immunotherapy-treated tumor datasets.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-022-01273-y</identifier><identifier>PMID: 36624345</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/2785 ; 631/208/212 ; 631/208/248 ; 631/67/580 ; Agriculture ; Amino acids ; Animal Genetics and Genomics ; Biomedical and Life Sciences ; Biomedicine ; Cancer ; Cancer Research ; Epitopes ; Epitopes - genetics ; Frequency analysis ; Frequency spectrum ; Gene Function ; Human Genetics ; Humans ; Identification methods ; Immune checkpoint inhibitors ; Immunogenicity ; Immunotherapy ; Lymphocytes ; Lymphocytes T ; Major histocompatibility complex ; Methods ; Mutation ; Neoplasms - genetics ; Neoplasms - therapy ; Peptides ; Peptides - chemistry ; Peptides - metabolism ; Phenotypes ; Power ; Proteins ; Survival analysis ; T cell receptors ; T-Lymphocytes ; Tumors</subject><ispartof>Nature genetics, 2023-02, Vol.55 (2), p.221-231</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><rights>Copyright Nature Publishing Group Feb 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-2ab6f29b70ec7e86ff7bfbf4e922344af4696392499cc4782b08e77cfad3a7143</citedby><cites>FETCH-LOGICAL-c375t-2ab6f29b70ec7e86ff7bfbf4e922344af4696392499cc4782b08e77cfad3a7143</cites><orcidid>0000-0003-1313-8124 ; 0000-0002-9219-3350 ; 0000-0003-2077-8947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41588-022-01273-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41588-022-01273-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36624345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Jeong Yeon</creatorcontrib><creatorcontrib>Cha, Hongui</creatorcontrib><creatorcontrib>Kim, Kyeonghui</creatorcontrib><creatorcontrib>Sung, Changhwan</creatorcontrib><creatorcontrib>An, Jinhyeon</creatorcontrib><creatorcontrib>Bang, Hyoeun</creatorcontrib><creatorcontrib>Kim, Hyungjoo</creatorcontrib><creatorcontrib>Yang, Jin Ok</creatorcontrib><creatorcontrib>Chang, Suhwan</creatorcontrib><creatorcontrib>Shin, Incheol</creatorcontrib><creatorcontrib>Noh, Seung-Jae</creatorcontrib><creatorcontrib>Shin, Inkyung</creatorcontrib><creatorcontrib>Cho, Dae-Yeon</creatorcontrib><creatorcontrib>Lee, Se-Hoon</creatorcontrib><creatorcontrib>Choi, Jung Kyoon</creatorcontrib><title>MHC II immunogenicity shapes the neoepitope landscape in human tumors</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Despite advances in predicting physical peptide-major histocompatibility complex I (pMHC I) binding, it remains challenging to identify functionally immunogenic neoepitopes, especially for MHC II. By using the results of &gt;36,000 immunogenicity assay, we developed a method to identify pMHC whose structural alignment facilitates T cell reaction. Our method predicted neoepitopes for MHC II and MHC I that were responsive to checkpoint blockade when applied to &gt;1,200 samples of various tumor types. To investigate selection by spontaneous immunity at the single epitope level, we analyzed the frequency spectrum of &gt;25 million mutations in &gt;9,000 treatment-naive tumors with &gt;100 immune phenotypes. MHC II immunogenicity specifically lowered variant frequencies in tumors under high immune pressure, particularly with high TCR clonality and MHC II expression. A similar trend was shown for MHC I neoepitopes, but only in particular tissue types. In summary, we report immune selection imposed by MHC II-restricted natural or therapeutic T cell reactivity. DeepNeo identifies major histocompatibility complex (MHC) I or MHC II neoepitopes that are immunogenically compatible with the T cell repertoire. It can predict neoepitopes most likely to be depleted through spontaneous immunity or through immune checkpoint blockade from untreated and immunotherapy-treated tumor datasets.</description><subject>631/114/2785</subject><subject>631/208/212</subject><subject>631/208/248</subject><subject>631/67/580</subject><subject>Agriculture</subject><subject>Amino acids</subject><subject>Animal Genetics and Genomics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Epitopes</subject><subject>Epitopes - genetics</subject><subject>Frequency analysis</subject><subject>Frequency spectrum</subject><subject>Gene Function</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Identification methods</subject><subject>Immune checkpoint inhibitors</subject><subject>Immunogenicity</subject><subject>Immunotherapy</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Major histocompatibility complex</subject><subject>Methods</subject><subject>Mutation</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - therapy</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Peptides - metabolism</subject><subject>Phenotypes</subject><subject>Power</subject><subject>Proteins</subject><subject>Survival analysis</subject><subject>T cell receptors</subject><subject>T-Lymphocytes</subject><subject>Tumors</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kLlOAzEQhi0EIuF4AQpkiYZmwcfE9pYoChApiAZqy-uMyUbZg_VukbfHIRwSBdN4pPnm9-gj5IKzG86kuY3AJ8ZkTIiMcaFltj0gYz4BlXHNzWHqmeIZMKlG5CTGNWMcgJljMpJKCZAwGZPZ0-OUzue0rKqhbt6wLn3Zb2lcuRYj7VdIa2ywLfumRbpx9TL6NKFlTVdD5WraD1XTxTNyFNwm4vnXe0pe72cv08ds8fwwn94tMi_1pM-EK1QQeaEZeo1GhaCLUATAXAgJ4AKoXMlcQJ57D9qIghnU2ge3lE5zkKfkep_bds37gLG3VRk9btJh2AzRCq1kKjA6oVd_0HUzdHW6LlFaMwMCdpTYU75rYuww2LYrK9dtLWd2J9nuJdsk2X5Kttu0dPkVPRQVLn9Wvq0mQO6BmEb1G3a_f_8T-wGUjYcS</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Kim, Jeong Yeon</creator><creator>Cha, Hongui</creator><creator>Kim, Kyeonghui</creator><creator>Sung, Changhwan</creator><creator>An, Jinhyeon</creator><creator>Bang, Hyoeun</creator><creator>Kim, Hyungjoo</creator><creator>Yang, Jin Ok</creator><creator>Chang, Suhwan</creator><creator>Shin, Incheol</creator><creator>Noh, Seung-Jae</creator><creator>Shin, Inkyung</creator><creator>Cho, Dae-Yeon</creator><creator>Lee, Se-Hoon</creator><creator>Choi, Jung Kyoon</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1313-8124</orcidid><orcidid>https://orcid.org/0000-0002-9219-3350</orcidid><orcidid>https://orcid.org/0000-0003-2077-8947</orcidid></search><sort><creationdate>20230201</creationdate><title>MHC II immunogenicity shapes the neoepitope landscape in human tumors</title><author>Kim, Jeong Yeon ; Cha, Hongui ; Kim, Kyeonghui ; Sung, Changhwan ; An, Jinhyeon ; Bang, Hyoeun ; Kim, Hyungjoo ; Yang, Jin Ok ; Chang, Suhwan ; Shin, Incheol ; Noh, Seung-Jae ; Shin, Inkyung ; Cho, Dae-Yeon ; Lee, Se-Hoon ; Choi, Jung Kyoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-2ab6f29b70ec7e86ff7bfbf4e922344af4696392499cc4782b08e77cfad3a7143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/114/2785</topic><topic>631/208/212</topic><topic>631/208/248</topic><topic>631/67/580</topic><topic>Agriculture</topic><topic>Amino acids</topic><topic>Animal Genetics and Genomics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Epitopes</topic><topic>Epitopes - genetics</topic><topic>Frequency analysis</topic><topic>Frequency spectrum</topic><topic>Gene Function</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Identification methods</topic><topic>Immune checkpoint inhibitors</topic><topic>Immunogenicity</topic><topic>Immunotherapy</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Major histocompatibility complex</topic><topic>Methods</topic><topic>Mutation</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - therapy</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Peptides - metabolism</topic><topic>Phenotypes</topic><topic>Power</topic><topic>Proteins</topic><topic>Survival analysis</topic><topic>T cell receptors</topic><topic>T-Lymphocytes</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jeong Yeon</creatorcontrib><creatorcontrib>Cha, Hongui</creatorcontrib><creatorcontrib>Kim, Kyeonghui</creatorcontrib><creatorcontrib>Sung, Changhwan</creatorcontrib><creatorcontrib>An, Jinhyeon</creatorcontrib><creatorcontrib>Bang, Hyoeun</creatorcontrib><creatorcontrib>Kim, Hyungjoo</creatorcontrib><creatorcontrib>Yang, Jin Ok</creatorcontrib><creatorcontrib>Chang, Suhwan</creatorcontrib><creatorcontrib>Shin, Incheol</creatorcontrib><creatorcontrib>Noh, Seung-Jae</creatorcontrib><creatorcontrib>Shin, Inkyung</creatorcontrib><creatorcontrib>Cho, Dae-Yeon</creatorcontrib><creatorcontrib>Lee, Se-Hoon</creatorcontrib><creatorcontrib>Choi, Jung Kyoon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jeong Yeon</au><au>Cha, Hongui</au><au>Kim, Kyeonghui</au><au>Sung, Changhwan</au><au>An, Jinhyeon</au><au>Bang, Hyoeun</au><au>Kim, Hyungjoo</au><au>Yang, Jin Ok</au><au>Chang, Suhwan</au><au>Shin, Incheol</au><au>Noh, Seung-Jae</au><au>Shin, Inkyung</au><au>Cho, Dae-Yeon</au><au>Lee, Se-Hoon</au><au>Choi, Jung Kyoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MHC II immunogenicity shapes the neoepitope landscape in human tumors</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>55</volume><issue>2</issue><spage>221</spage><epage>231</epage><pages>221-231</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Despite advances in predicting physical peptide-major histocompatibility complex I (pMHC I) binding, it remains challenging to identify functionally immunogenic neoepitopes, especially for MHC II. By using the results of &gt;36,000 immunogenicity assay, we developed a method to identify pMHC whose structural alignment facilitates T cell reaction. Our method predicted neoepitopes for MHC II and MHC I that were responsive to checkpoint blockade when applied to &gt;1,200 samples of various tumor types. To investigate selection by spontaneous immunity at the single epitope level, we analyzed the frequency spectrum of &gt;25 million mutations in &gt;9,000 treatment-naive tumors with &gt;100 immune phenotypes. MHC II immunogenicity specifically lowered variant frequencies in tumors under high immune pressure, particularly with high TCR clonality and MHC II expression. A similar trend was shown for MHC I neoepitopes, but only in particular tissue types. In summary, we report immune selection imposed by MHC II-restricted natural or therapeutic T cell reactivity. DeepNeo identifies major histocompatibility complex (MHC) I or MHC II neoepitopes that are immunogenically compatible with the T cell repertoire. It can predict neoepitopes most likely to be depleted through spontaneous immunity or through immune checkpoint blockade from untreated and immunotherapy-treated tumor datasets.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>36624345</pmid><doi>10.1038/s41588-022-01273-y</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1313-8124</orcidid><orcidid>https://orcid.org/0000-0002-9219-3350</orcidid><orcidid>https://orcid.org/0000-0003-2077-8947</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1061-4036
ispartof Nature genetics, 2023-02, Vol.55 (2), p.221-231
issn 1061-4036
1546-1718
language eng
recordid cdi_proquest_miscellaneous_2763333487
source MEDLINE; Nature; Springer Nature - Complete Springer Journals
subjects 631/114/2785
631/208/212
631/208/248
631/67/580
Agriculture
Amino acids
Animal Genetics and Genomics
Biomedical and Life Sciences
Biomedicine
Cancer
Cancer Research
Epitopes
Epitopes - genetics
Frequency analysis
Frequency spectrum
Gene Function
Human Genetics
Humans
Identification methods
Immune checkpoint inhibitors
Immunogenicity
Immunotherapy
Lymphocytes
Lymphocytes T
Major histocompatibility complex
Methods
Mutation
Neoplasms - genetics
Neoplasms - therapy
Peptides
Peptides - chemistry
Peptides - metabolism
Phenotypes
Power
Proteins
Survival analysis
T cell receptors
T-Lymphocytes
Tumors
title MHC II immunogenicity shapes the neoepitope landscape in human tumors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A38%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MHC%20II%20immunogenicity%20shapes%20the%20neoepitope%20landscape%20in%20human%20tumors&rft.jtitle=Nature%20genetics&rft.au=Kim,%20Jeong%20Yeon&rft.date=2023-02-01&rft.volume=55&rft.issue=2&rft.spage=221&rft.epage=231&rft.pages=221-231&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-022-01273-y&rft_dat=%3Cproquest_cross%3E2763333487%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777084247&rft_id=info:pmid/36624345&rfr_iscdi=true