Grafting and Solubilization of Redox‐Active Organic Materials for Aqueous Redox Flow Batteries

This study concerns the development of sustainable design strategies of aqueous electrolytes for redox flow batteries using redox‐active organic materials. A green spontaneous grafting reaction occurs between a redox‐active organic radical and an electrochemically activated structural modifier at ro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2023-04, Vol.16 (8), p.e202201993-n/a
Hauptverfasser: Chen, Ruiyong, Zhang, Peng, Chang, Zhenjun, Yan, Junfeng, Kraus, Tobias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page e202201993
container_title ChemSusChem
container_volume 16
creator Chen, Ruiyong
Zhang, Peng
Chang, Zhenjun
Yan, Junfeng
Kraus, Tobias
description This study concerns the development of sustainable design strategies of aqueous electrolytes for redox flow batteries using redox‐active organic materials. A green spontaneous grafting reaction occurs between a redox‐active organic radical and an electrochemically activated structural modifier at room temperature through a simple mixing step. Then, a physical mixing method is used to formulate a structured aqueous electrolyte and enables aqueous solubilization of the organic solute from below 0.5 to 1.5 m beyond the conventional dissolution limit. The as‐obtained concentrated mixture can be readily used as catholyte for a redox flow battery. A record high discharge cell voltage (1.6 V onset output voltage) in aqueous non‐hybrid flow cell is attained by using the studied electrolytes. Hard graft: Sustainable design strategies for aqueous electrolytes in redox flow batteries using redox‐active organic materials. The obtained concentrated mixtures can be readily used as catholyte for a redox flow battery. A record high discharge cell voltage is attained in an aqueous non‐hybrid flow cell.
doi_str_mv 10.1002/cssc.202201993
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2763333179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2803860820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-74b9a47a271ca6ce440b7f85f23745cdd5c316472d3511bf5239885f253212e63</originalsourceid><addsrcrecordid>eNqF0E1LwzAYB_AgipsvV48S8OJlMy9N0h7ncFNQBKfgLaZpOjK6Ziatc578CH5GP4kt0wlezCWB55c_D38AjjDqY4TImQ5B9wkiBOEkoVugi2Me9RiPHrc3b4o7YC-EGUIcJZzvgg7lnDDBki54GnuVV7acQlVmcOKKOrWFfVOVdSV0ObwzmXv9fP8Y6Mq-GHjrp6q0Gt6oynirigBz5-HguTauDmsMR4VbwnNVtcKEA7CTN84cft_74GF0cT-87F3fjq-Gg-uepoLSnojSREVCEYG14tpEEUpFHrOcUBExnWVMU8wjQTLKME5zRmgSt2NGCSaG031wus5deNesEyo5t0GbolBlu5skgtPmYJE09OQPnbnal812ksSIxhzFBDWqv1bauxC8yeXC27nyK4mRbLuXbfdy033z4fg7tk7nJtvwn7IbkKzB0hZm9U-cHE4mw9_wL9VhkFE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803860820</pqid></control><display><type>article</type><title>Grafting and Solubilization of Redox‐Active Organic Materials for Aqueous Redox Flow Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Ruiyong ; Zhang, Peng ; Chang, Zhenjun ; Yan, Junfeng ; Kraus, Tobias</creator><creatorcontrib>Chen, Ruiyong ; Zhang, Peng ; Chang, Zhenjun ; Yan, Junfeng ; Kraus, Tobias</creatorcontrib><description>This study concerns the development of sustainable design strategies of aqueous electrolytes for redox flow batteries using redox‐active organic materials. A green spontaneous grafting reaction occurs between a redox‐active organic radical and an electrochemically activated structural modifier at room temperature through a simple mixing step. Then, a physical mixing method is used to formulate a structured aqueous electrolyte and enables aqueous solubilization of the organic solute from below 0.5 to 1.5 m beyond the conventional dissolution limit. The as‐obtained concentrated mixture can be readily used as catholyte for a redox flow battery. A record high discharge cell voltage (1.6 V onset output voltage) in aqueous non‐hybrid flow cell is attained by using the studied electrolytes. Hard graft: Sustainable design strategies for aqueous electrolytes in redox flow batteries using redox‐active organic materials. The obtained concentrated mixtures can be readily used as catholyte for a redox flow battery. A record high discharge cell voltage is attained in an aqueous non‐hybrid flow cell.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.202201993</identifier><identifier>PMID: 36625759</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aqueous electrolytes ; Discharge cells ; Electric potential ; electrolytes ; electrosynthesis ; Grafting ; ionic grafting ; Organic materials ; Rechargeable batteries ; redox flow batteries ; Room temperature ; solubility ; Solubilization ; Voltage</subject><ispartof>ChemSusChem, 2023-04, Vol.16 (8), p.e202201993-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-74b9a47a271ca6ce440b7f85f23745cdd5c316472d3511bf5239885f253212e63</citedby><cites>FETCH-LOGICAL-c3733-74b9a47a271ca6ce440b7f85f23745cdd5c316472d3511bf5239885f253212e63</cites><orcidid>0000-0002-5340-248X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.202201993$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.202201993$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36625759$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Ruiyong</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Chang, Zhenjun</creatorcontrib><creatorcontrib>Yan, Junfeng</creatorcontrib><creatorcontrib>Kraus, Tobias</creatorcontrib><title>Grafting and Solubilization of Redox‐Active Organic Materials for Aqueous Redox Flow Batteries</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>This study concerns the development of sustainable design strategies of aqueous electrolytes for redox flow batteries using redox‐active organic materials. A green spontaneous grafting reaction occurs between a redox‐active organic radical and an electrochemically activated structural modifier at room temperature through a simple mixing step. Then, a physical mixing method is used to formulate a structured aqueous electrolyte and enables aqueous solubilization of the organic solute from below 0.5 to 1.5 m beyond the conventional dissolution limit. The as‐obtained concentrated mixture can be readily used as catholyte for a redox flow battery. A record high discharge cell voltage (1.6 V onset output voltage) in aqueous non‐hybrid flow cell is attained by using the studied electrolytes. Hard graft: Sustainable design strategies for aqueous electrolytes in redox flow batteries using redox‐active organic materials. The obtained concentrated mixtures can be readily used as catholyte for a redox flow battery. A record high discharge cell voltage is attained in an aqueous non‐hybrid flow cell.</description><subject>Aqueous electrolytes</subject><subject>Discharge cells</subject><subject>Electric potential</subject><subject>electrolytes</subject><subject>electrosynthesis</subject><subject>Grafting</subject><subject>ionic grafting</subject><subject>Organic materials</subject><subject>Rechargeable batteries</subject><subject>redox flow batteries</subject><subject>Room temperature</subject><subject>solubility</subject><subject>Solubilization</subject><subject>Voltage</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqF0E1LwzAYB_AgipsvV48S8OJlMy9N0h7ncFNQBKfgLaZpOjK6Ziatc578CH5GP4kt0wlezCWB55c_D38AjjDqY4TImQ5B9wkiBOEkoVugi2Me9RiPHrc3b4o7YC-EGUIcJZzvgg7lnDDBki54GnuVV7acQlVmcOKKOrWFfVOVdSV0ObwzmXv9fP8Y6Mq-GHjrp6q0Gt6oynirigBz5-HguTauDmsMR4VbwnNVtcKEA7CTN84cft_74GF0cT-87F3fjq-Gg-uepoLSnojSREVCEYG14tpEEUpFHrOcUBExnWVMU8wjQTLKME5zRmgSt2NGCSaG031wus5deNesEyo5t0GbolBlu5skgtPmYJE09OQPnbnal812ksSIxhzFBDWqv1bauxC8yeXC27nyK4mRbLuXbfdy033z4fg7tk7nJtvwn7IbkKzB0hZm9U-cHE4mw9_wL9VhkFE</recordid><startdate>20230421</startdate><enddate>20230421</enddate><creator>Chen, Ruiyong</creator><creator>Zhang, Peng</creator><creator>Chang, Zhenjun</creator><creator>Yan, Junfeng</creator><creator>Kraus, Tobias</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5340-248X</orcidid></search><sort><creationdate>20230421</creationdate><title>Grafting and Solubilization of Redox‐Active Organic Materials for Aqueous Redox Flow Batteries</title><author>Chen, Ruiyong ; Zhang, Peng ; Chang, Zhenjun ; Yan, Junfeng ; Kraus, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-74b9a47a271ca6ce440b7f85f23745cdd5c316472d3511bf5239885f253212e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aqueous electrolytes</topic><topic>Discharge cells</topic><topic>Electric potential</topic><topic>electrolytes</topic><topic>electrosynthesis</topic><topic>Grafting</topic><topic>ionic grafting</topic><topic>Organic materials</topic><topic>Rechargeable batteries</topic><topic>redox flow batteries</topic><topic>Room temperature</topic><topic>solubility</topic><topic>Solubilization</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ruiyong</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Chang, Zhenjun</creatorcontrib><creatorcontrib>Yan, Junfeng</creatorcontrib><creatorcontrib>Kraus, Tobias</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ruiyong</au><au>Zhang, Peng</au><au>Chang, Zhenjun</au><au>Yan, Junfeng</au><au>Kraus, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grafting and Solubilization of Redox‐Active Organic Materials for Aqueous Redox Flow Batteries</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2023-04-21</date><risdate>2023</risdate><volume>16</volume><issue>8</issue><spage>e202201993</spage><epage>n/a</epage><pages>e202201993-n/a</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>This study concerns the development of sustainable design strategies of aqueous electrolytes for redox flow batteries using redox‐active organic materials. A green spontaneous grafting reaction occurs between a redox‐active organic radical and an electrochemically activated structural modifier at room temperature through a simple mixing step. Then, a physical mixing method is used to formulate a structured aqueous electrolyte and enables aqueous solubilization of the organic solute from below 0.5 to 1.5 m beyond the conventional dissolution limit. The as‐obtained concentrated mixture can be readily used as catholyte for a redox flow battery. A record high discharge cell voltage (1.6 V onset output voltage) in aqueous non‐hybrid flow cell is attained by using the studied electrolytes. Hard graft: Sustainable design strategies for aqueous electrolytes in redox flow batteries using redox‐active organic materials. The obtained concentrated mixtures can be readily used as catholyte for a redox flow battery. A record high discharge cell voltage is attained in an aqueous non‐hybrid flow cell.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36625759</pmid><doi>10.1002/cssc.202201993</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5340-248X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2023-04, Vol.16 (8), p.e202201993-n/a
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_miscellaneous_2763333179
source Wiley Online Library Journals Frontfile Complete
subjects Aqueous electrolytes
Discharge cells
Electric potential
electrolytes
electrosynthesis
Grafting
ionic grafting
Organic materials
Rechargeable batteries
redox flow batteries
Room temperature
solubility
Solubilization
Voltage
title Grafting and Solubilization of Redox‐Active Organic Materials for Aqueous Redox Flow Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A37%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grafting%20and%20Solubilization%20of%20Redox%E2%80%90Active%20Organic%20Materials%20for%20Aqueous%20Redox%20Flow%20Batteries&rft.jtitle=ChemSusChem&rft.au=Chen,%20Ruiyong&rft.date=2023-04-21&rft.volume=16&rft.issue=8&rft.spage=e202201993&rft.epage=n/a&rft.pages=e202201993-n/a&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.202201993&rft_dat=%3Cproquest_cross%3E2803860820%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2803860820&rft_id=info:pmid/36625759&rfr_iscdi=true