Hydrolysis of Poly(fluoroacrylate) Thin Films Synthesized from the Vapor Phase

The post-synthesis surface reaction of vapor-deposited polymer thin films is a promising technique in engineering heterogeneous surface chemistry. Because the existing research has neglected marginally reactive precursor films in preference of their highly reactive counterparts, our knowledge of kin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2023-01, Vol.39 (3), p.1215-1226
Hauptverfasser: Shindler, Simon, Yang, Rong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1226
container_issue 3
container_start_page 1215
container_title Langmuir
container_volume 39
creator Shindler, Simon
Yang, Rong
description The post-synthesis surface reaction of vapor-deposited polymer thin films is a promising technique in engineering heterogeneous surface chemistry. Because the existing research has neglected marginally reactive precursor films in preference of their highly reactive counterparts, our knowledge of kinetics and loss of film integrity during the reaction are limited. To address these limitations, we characterize hydrolysis of two fluoroacrylates, poly­(1H,1H,2H,2H-perfluorooctyl acrylate) (pPFOA) and poly­(2,2,3,4,4,4-hexafluorobutyl acrylate) (pHFBA), with sodium hydroxide using X-ray photoelectron spectroscopy. Without crosslinking with di­(ethylene glycol)­divinyl ether (DEGDVE) and grafting with trichlorovinyl silane, the films degrade rapidly during hydrolysis. An SN2 mechanism describes hydrolysis well, with rate constants of 0.0029 ± 0.0004 and 0.011 ± 0.001 L mol–1s–1 at 30 °C for p­(PFOA-co-DEGDVE) and p­(HFBA-co-DEGDVE), respectively. Our detailed study of hydrolysis kinetics of marginally reactive fluoroacrylates demonstrates the full capability and limitations of the post-synthesis reaction. Importantly, copolymers are characterized using a density correction new to polymer chemical vapor deposition.
doi_str_mv 10.1021/acs.langmuir.2c03005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2762816152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2762816152</sourcerecordid><originalsourceid>FETCH-LOGICAL-a278t-3e1c367bd0ee7097e55834a5d42db25d209f593e75dd412cb3cfa2db6673ce143</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EoqXwBgj5WA4p_ont5IgqSpEqqEThajm2Q1MldbGTQ3h6XLXlyGl3tTOz2g-AW4wmGBH8oHSY1Gr71XSVnxCNKELsDAwxIyhhGRHnYIhEShORcjoAVyFsEEI5TfNLMKCcE5zleAhe573xru5DFaAr4TK247LunHdK-75Wrb2Hq3W1hbOqbgJ877ft2obqxxpYetfAOMFPtXMeLtcq2GtwUao62JtjHYGP2dNqOk8Wb88v08dFoojI2oRarCkXhUHWCpQLy1hGU8VMSkxBmCEoL1lOrWDGpJjogupSxRXngmqLUzoC40PuzrvvzoZWNlXQto5ArOuCJIKTDPMII0rTg1R7F4K3pdz5qlG-lxjJPUkZScoTSXkkGW13xwtd0VjzZzqhiwJ0EOztG9f5bXz4_8xfz0yDXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2762816152</pqid></control><display><type>article</type><title>Hydrolysis of Poly(fluoroacrylate) Thin Films Synthesized from the Vapor Phase</title><source>ACS Publications</source><creator>Shindler, Simon ; Yang, Rong</creator><creatorcontrib>Shindler, Simon ; Yang, Rong</creatorcontrib><description>The post-synthesis surface reaction of vapor-deposited polymer thin films is a promising technique in engineering heterogeneous surface chemistry. Because the existing research has neglected marginally reactive precursor films in preference of their highly reactive counterparts, our knowledge of kinetics and loss of film integrity during the reaction are limited. To address these limitations, we characterize hydrolysis of two fluoroacrylates, poly­(1H,1H,2H,2H-perfluorooctyl acrylate) (pPFOA) and poly­(2,2,3,4,4,4-hexafluorobutyl acrylate) (pHFBA), with sodium hydroxide using X-ray photoelectron spectroscopy. Without crosslinking with di­(ethylene glycol)­divinyl ether (DEGDVE) and grafting with trichlorovinyl silane, the films degrade rapidly during hydrolysis. An SN2 mechanism describes hydrolysis well, with rate constants of 0.0029 ± 0.0004 and 0.011 ± 0.001 L mol–1s–1 at 30 °C for p­(PFOA-co-DEGDVE) and p­(HFBA-co-DEGDVE), respectively. Our detailed study of hydrolysis kinetics of marginally reactive fluoroacrylates demonstrates the full capability and limitations of the post-synthesis reaction. Importantly, copolymers are characterized using a density correction new to polymer chemical vapor deposition.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.2c03005</identifier><identifier>PMID: 36621891</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2023-01, Vol.39 (3), p.1215-1226</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a278t-3e1c367bd0ee7097e55834a5d42db25d209f593e75dd412cb3cfa2db6673ce143</citedby><cites>FETCH-LOGICAL-a278t-3e1c367bd0ee7097e55834a5d42db25d209f593e75dd412cb3cfa2db6673ce143</cites><orcidid>0000-0001-6427-026X ; 0000-0002-7396-2476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.2c03005$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.2c03005$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36621891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shindler, Simon</creatorcontrib><creatorcontrib>Yang, Rong</creatorcontrib><title>Hydrolysis of Poly(fluoroacrylate) Thin Films Synthesized from the Vapor Phase</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>The post-synthesis surface reaction of vapor-deposited polymer thin films is a promising technique in engineering heterogeneous surface chemistry. Because the existing research has neglected marginally reactive precursor films in preference of their highly reactive counterparts, our knowledge of kinetics and loss of film integrity during the reaction are limited. To address these limitations, we characterize hydrolysis of two fluoroacrylates, poly­(1H,1H,2H,2H-perfluorooctyl acrylate) (pPFOA) and poly­(2,2,3,4,4,4-hexafluorobutyl acrylate) (pHFBA), with sodium hydroxide using X-ray photoelectron spectroscopy. Without crosslinking with di­(ethylene glycol)­divinyl ether (DEGDVE) and grafting with trichlorovinyl silane, the films degrade rapidly during hydrolysis. An SN2 mechanism describes hydrolysis well, with rate constants of 0.0029 ± 0.0004 and 0.011 ± 0.001 L mol–1s–1 at 30 °C for p­(PFOA-co-DEGDVE) and p­(HFBA-co-DEGDVE), respectively. Our detailed study of hydrolysis kinetics of marginally reactive fluoroacrylates demonstrates the full capability and limitations of the post-synthesis reaction. Importantly, copolymers are characterized using a density correction new to polymer chemical vapor deposition.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EoqXwBgj5WA4p_ont5IgqSpEqqEThajm2Q1MldbGTQ3h6XLXlyGl3tTOz2g-AW4wmGBH8oHSY1Gr71XSVnxCNKELsDAwxIyhhGRHnYIhEShORcjoAVyFsEEI5TfNLMKCcE5zleAhe573xru5DFaAr4TK247LunHdK-75Wrb2Hq3W1hbOqbgJ877ft2obqxxpYetfAOMFPtXMeLtcq2GtwUao62JtjHYGP2dNqOk8Wb88v08dFoojI2oRarCkXhUHWCpQLy1hGU8VMSkxBmCEoL1lOrWDGpJjogupSxRXngmqLUzoC40PuzrvvzoZWNlXQto5ArOuCJIKTDPMII0rTg1R7F4K3pdz5qlG-lxjJPUkZScoTSXkkGW13xwtd0VjzZzqhiwJ0EOztG9f5bXz4_8xfz0yDXA</recordid><startdate>20230124</startdate><enddate>20230124</enddate><creator>Shindler, Simon</creator><creator>Yang, Rong</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6427-026X</orcidid><orcidid>https://orcid.org/0000-0002-7396-2476</orcidid></search><sort><creationdate>20230124</creationdate><title>Hydrolysis of Poly(fluoroacrylate) Thin Films Synthesized from the Vapor Phase</title><author>Shindler, Simon ; Yang, Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a278t-3e1c367bd0ee7097e55834a5d42db25d209f593e75dd412cb3cfa2db6673ce143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shindler, Simon</creatorcontrib><creatorcontrib>Yang, Rong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shindler, Simon</au><au>Yang, Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrolysis of Poly(fluoroacrylate) Thin Films Synthesized from the Vapor Phase</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2023-01-24</date><risdate>2023</risdate><volume>39</volume><issue>3</issue><spage>1215</spage><epage>1226</epage><pages>1215-1226</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>The post-synthesis surface reaction of vapor-deposited polymer thin films is a promising technique in engineering heterogeneous surface chemistry. Because the existing research has neglected marginally reactive precursor films in preference of their highly reactive counterparts, our knowledge of kinetics and loss of film integrity during the reaction are limited. To address these limitations, we characterize hydrolysis of two fluoroacrylates, poly­(1H,1H,2H,2H-perfluorooctyl acrylate) (pPFOA) and poly­(2,2,3,4,4,4-hexafluorobutyl acrylate) (pHFBA), with sodium hydroxide using X-ray photoelectron spectroscopy. Without crosslinking with di­(ethylene glycol)­divinyl ether (DEGDVE) and grafting with trichlorovinyl silane, the films degrade rapidly during hydrolysis. An SN2 mechanism describes hydrolysis well, with rate constants of 0.0029 ± 0.0004 and 0.011 ± 0.001 L mol–1s–1 at 30 °C for p­(PFOA-co-DEGDVE) and p­(HFBA-co-DEGDVE), respectively. Our detailed study of hydrolysis kinetics of marginally reactive fluoroacrylates demonstrates the full capability and limitations of the post-synthesis reaction. Importantly, copolymers are characterized using a density correction new to polymer chemical vapor deposition.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36621891</pmid><doi>10.1021/acs.langmuir.2c03005</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6427-026X</orcidid><orcidid>https://orcid.org/0000-0002-7396-2476</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2023-01, Vol.39 (3), p.1215-1226
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_2762816152
source ACS Publications
title Hydrolysis of Poly(fluoroacrylate) Thin Films Synthesized from the Vapor Phase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A07%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrolysis%20of%20Poly(fluoroacrylate)%20Thin%20Films%20Synthesized%20from%20the%20Vapor%20Phase&rft.jtitle=Langmuir&rft.au=Shindler,%20Simon&rft.date=2023-01-24&rft.volume=39&rft.issue=3&rft.spage=1215&rft.epage=1226&rft.pages=1215-1226&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.2c03005&rft_dat=%3Cproquest_cross%3E2762816152%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2762816152&rft_id=info:pmid/36621891&rfr_iscdi=true