Ant algorithms and stigmergy

Ant colonies, and more generally social insect societies, are distributed systems that, in spite of the simplicity of their individuals, present a highly structured social organization. As a result of this organization, ant colonies can accomplish complex tasks that in some cases far exceed the indi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Future generation computer systems 2000, Vol.16 (8), p.851-871
Hauptverfasser: Dorigo, Marco, Bonabeau, Eric, Theraulaz, Guy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 871
container_issue 8
container_start_page 851
container_title Future generation computer systems
container_volume 16
creator Dorigo, Marco
Bonabeau, Eric
Theraulaz, Guy
description Ant colonies, and more generally social insect societies, are distributed systems that, in spite of the simplicity of their individuals, present a highly structured social organization. As a result of this organization, ant colonies can accomplish complex tasks that in some cases far exceed the individual capacities of a single ant. The study of ant colonies behavior and of their self-organizing capacities is interesting for computer scientists because it provides models of distributed organization which are useful to solve difficult optimization and distributed control problems. In this paper we overview some models derived from the observation of real ants, emphasizing the role played by stigmergy as distributed communication paradigm, and we show how these models have inspired a number of novel algorithms for the solution of distributed optimization and distributed control problems.
doi_str_mv 10.1016/S0167-739X(00)00042-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27628058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167739X0000042X</els_id><sourcerecordid>27628058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-36b7402b356028d7386717468ccfde3b101438898c3c9fce5699fceca86645703</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoWEf_gUJXoovqTdMm6UqGwRcMuFChu9CmtzXSx5hkhPn3tlNx6-aezXcO9xxCLijcUKD89nU8IhIsy68ArgEgiaP8gARUijgSlKaHJPhDjsmJc58jRAWjATlf9j4s2mawxn90Liz6KnTeNB3aZndKjuqidXj2qwvy_nD_tnqK1i-Pz6vlOtIsAx8xXooE4pKlHGJZCSa5oCLhUuu6QlaOTyZMykxqprNaY8qzSXQhOU9SAWxBLufcjR2-tui86ozT2LZFj8PWqVjwWEIqRzCdQW0H5yzWamNNV9idoqCmLdR-CzUVVQBqv4XKR9_d7MOxxbdBq5w22GusjEXtVTWYfxJ-AFp6ZIc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27628058</pqid></control><display><type>article</type><title>Ant algorithms and stigmergy</title><source>Access via ScienceDirect (Elsevier)</source><creator>Dorigo, Marco ; Bonabeau, Eric ; Theraulaz, Guy</creator><creatorcontrib>Dorigo, Marco ; Bonabeau, Eric ; Theraulaz, Guy</creatorcontrib><description>Ant colonies, and more generally social insect societies, are distributed systems that, in spite of the simplicity of their individuals, present a highly structured social organization. As a result of this organization, ant colonies can accomplish complex tasks that in some cases far exceed the individual capacities of a single ant. The study of ant colonies behavior and of their self-organizing capacities is interesting for computer scientists because it provides models of distributed organization which are useful to solve difficult optimization and distributed control problems. In this paper we overview some models derived from the observation of real ants, emphasizing the role played by stigmergy as distributed communication paradigm, and we show how these models have inspired a number of novel algorithms for the solution of distributed optimization and distributed control problems.</description><identifier>ISSN: 0167-739X</identifier><identifier>EISSN: 1872-7115</identifier><identifier>DOI: 10.1016/S0167-739X(00)00042-X</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Ant algorithms ; Ant colony optimization ; Metaheuristics ; Self-organization ; Social insects ; Swarm intelligence</subject><ispartof>Future generation computer systems, 2000, Vol.16 (8), p.851-871</ispartof><rights>2000 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-36b7402b356028d7386717468ccfde3b101438898c3c9fce5699fceca86645703</citedby><cites>FETCH-LOGICAL-c390t-36b7402b356028d7386717468ccfde3b101438898c3c9fce5699fceca86645703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0167-739X(00)00042-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Dorigo, Marco</creatorcontrib><creatorcontrib>Bonabeau, Eric</creatorcontrib><creatorcontrib>Theraulaz, Guy</creatorcontrib><title>Ant algorithms and stigmergy</title><title>Future generation computer systems</title><description>Ant colonies, and more generally social insect societies, are distributed systems that, in spite of the simplicity of their individuals, present a highly structured social organization. As a result of this organization, ant colonies can accomplish complex tasks that in some cases far exceed the individual capacities of a single ant. The study of ant colonies behavior and of their self-organizing capacities is interesting for computer scientists because it provides models of distributed organization which are useful to solve difficult optimization and distributed control problems. In this paper we overview some models derived from the observation of real ants, emphasizing the role played by stigmergy as distributed communication paradigm, and we show how these models have inspired a number of novel algorithms for the solution of distributed optimization and distributed control problems.</description><subject>Ant algorithms</subject><subject>Ant colony optimization</subject><subject>Metaheuristics</subject><subject>Self-organization</subject><subject>Social insects</subject><subject>Swarm intelligence</subject><issn>0167-739X</issn><issn>1872-7115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoWEf_gUJXoovqTdMm6UqGwRcMuFChu9CmtzXSx5hkhPn3tlNx6-aezXcO9xxCLijcUKD89nU8IhIsy68ArgEgiaP8gARUijgSlKaHJPhDjsmJc58jRAWjATlf9j4s2mawxn90Liz6KnTeNB3aZndKjuqidXj2qwvy_nD_tnqK1i-Pz6vlOtIsAx8xXooE4pKlHGJZCSa5oCLhUuu6QlaOTyZMykxqprNaY8qzSXQhOU9SAWxBLufcjR2-tui86ozT2LZFj8PWqVjwWEIqRzCdQW0H5yzWamNNV9idoqCmLdR-CzUVVQBqv4XKR9_d7MOxxbdBq5w22GusjEXtVTWYfxJ-AFp6ZIc</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Dorigo, Marco</creator><creator>Bonabeau, Eric</creator><creator>Theraulaz, Guy</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2000</creationdate><title>Ant algorithms and stigmergy</title><author>Dorigo, Marco ; Bonabeau, Eric ; Theraulaz, Guy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-36b7402b356028d7386717468ccfde3b101438898c3c9fce5699fceca86645703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Ant algorithms</topic><topic>Ant colony optimization</topic><topic>Metaheuristics</topic><topic>Self-organization</topic><topic>Social insects</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorigo, Marco</creatorcontrib><creatorcontrib>Bonabeau, Eric</creatorcontrib><creatorcontrib>Theraulaz, Guy</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Future generation computer systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorigo, Marco</au><au>Bonabeau, Eric</au><au>Theraulaz, Guy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ant algorithms and stigmergy</atitle><jtitle>Future generation computer systems</jtitle><date>2000</date><risdate>2000</risdate><volume>16</volume><issue>8</issue><spage>851</spage><epage>871</epage><pages>851-871</pages><issn>0167-739X</issn><eissn>1872-7115</eissn><abstract>Ant colonies, and more generally social insect societies, are distributed systems that, in spite of the simplicity of their individuals, present a highly structured social organization. As a result of this organization, ant colonies can accomplish complex tasks that in some cases far exceed the individual capacities of a single ant. The study of ant colonies behavior and of their self-organizing capacities is interesting for computer scientists because it provides models of distributed organization which are useful to solve difficult optimization and distributed control problems. In this paper we overview some models derived from the observation of real ants, emphasizing the role played by stigmergy as distributed communication paradigm, and we show how these models have inspired a number of novel algorithms for the solution of distributed optimization and distributed control problems.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0167-739X(00)00042-X</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-739X
ispartof Future generation computer systems, 2000, Vol.16 (8), p.851-871
issn 0167-739X
1872-7115
language eng
recordid cdi_proquest_miscellaneous_27628058
source Access via ScienceDirect (Elsevier)
subjects Ant algorithms
Ant colony optimization
Metaheuristics
Self-organization
Social insects
Swarm intelligence
title Ant algorithms and stigmergy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ant%20algorithms%20and%20stigmergy&rft.jtitle=Future%20generation%20computer%20systems&rft.au=Dorigo,%20Marco&rft.date=2000&rft.volume=16&rft.issue=8&rft.spage=851&rft.epage=871&rft.pages=851-871&rft.issn=0167-739X&rft.eissn=1872-7115&rft_id=info:doi/10.1016/S0167-739X(00)00042-X&rft_dat=%3Cproquest_cross%3E27628058%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27628058&rft_id=info:pmid/&rft_els_id=S0167739X0000042X&rfr_iscdi=true