Ant algorithms and stigmergy
Ant colonies, and more generally social insect societies, are distributed systems that, in spite of the simplicity of their individuals, present a highly structured social organization. As a result of this organization, ant colonies can accomplish complex tasks that in some cases far exceed the indi...
Gespeichert in:
Veröffentlicht in: | Future generation computer systems 2000, Vol.16 (8), p.851-871 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 871 |
---|---|
container_issue | 8 |
container_start_page | 851 |
container_title | Future generation computer systems |
container_volume | 16 |
creator | Dorigo, Marco Bonabeau, Eric Theraulaz, Guy |
description | Ant colonies, and more generally social insect societies, are distributed systems that, in spite of the simplicity of their individuals, present a highly structured social organization. As a result of this organization, ant colonies can accomplish complex tasks that in some cases far exceed the individual capacities of a single ant. The study of ant colonies behavior and of their self-organizing capacities is interesting for computer scientists because it provides models of distributed organization which are useful to solve difficult optimization and distributed control problems. In this paper we overview some models derived from the observation of real ants, emphasizing the role played by
stigmergy as distributed communication paradigm, and we show how these models have inspired a number of novel algorithms for the solution of distributed optimization and distributed control problems. |
doi_str_mv | 10.1016/S0167-739X(00)00042-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27628058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167739X0000042X</els_id><sourcerecordid>27628058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-36b7402b356028d7386717468ccfde3b101438898c3c9fce5699fceca86645703</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoWEf_gUJXoovqTdMm6UqGwRcMuFChu9CmtzXSx5hkhPn3tlNx6-aezXcO9xxCLijcUKD89nU8IhIsy68ArgEgiaP8gARUijgSlKaHJPhDjsmJc58jRAWjATlf9j4s2mawxn90Liz6KnTeNB3aZndKjuqidXj2qwvy_nD_tnqK1i-Pz6vlOtIsAx8xXooE4pKlHGJZCSa5oCLhUuu6QlaOTyZMykxqprNaY8qzSXQhOU9SAWxBLufcjR2-tui86ozT2LZFj8PWqVjwWEIqRzCdQW0H5yzWamNNV9idoqCmLdR-CzUVVQBqv4XKR9_d7MOxxbdBq5w22GusjEXtVTWYfxJ-AFp6ZIc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27628058</pqid></control><display><type>article</type><title>Ant algorithms and stigmergy</title><source>Access via ScienceDirect (Elsevier)</source><creator>Dorigo, Marco ; Bonabeau, Eric ; Theraulaz, Guy</creator><creatorcontrib>Dorigo, Marco ; Bonabeau, Eric ; Theraulaz, Guy</creatorcontrib><description>Ant colonies, and more generally social insect societies, are distributed systems that, in spite of the simplicity of their individuals, present a highly structured social organization. As a result of this organization, ant colonies can accomplish complex tasks that in some cases far exceed the individual capacities of a single ant. The study of ant colonies behavior and of their self-organizing capacities is interesting for computer scientists because it provides models of distributed organization which are useful to solve difficult optimization and distributed control problems. In this paper we overview some models derived from the observation of real ants, emphasizing the role played by
stigmergy as distributed communication paradigm, and we show how these models have inspired a number of novel algorithms for the solution of distributed optimization and distributed control problems.</description><identifier>ISSN: 0167-739X</identifier><identifier>EISSN: 1872-7115</identifier><identifier>DOI: 10.1016/S0167-739X(00)00042-X</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Ant algorithms ; Ant colony optimization ; Metaheuristics ; Self-organization ; Social insects ; Swarm intelligence</subject><ispartof>Future generation computer systems, 2000, Vol.16 (8), p.851-871</ispartof><rights>2000 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-36b7402b356028d7386717468ccfde3b101438898c3c9fce5699fceca86645703</citedby><cites>FETCH-LOGICAL-c390t-36b7402b356028d7386717468ccfde3b101438898c3c9fce5699fceca86645703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0167-739X(00)00042-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Dorigo, Marco</creatorcontrib><creatorcontrib>Bonabeau, Eric</creatorcontrib><creatorcontrib>Theraulaz, Guy</creatorcontrib><title>Ant algorithms and stigmergy</title><title>Future generation computer systems</title><description>Ant colonies, and more generally social insect societies, are distributed systems that, in spite of the simplicity of their individuals, present a highly structured social organization. As a result of this organization, ant colonies can accomplish complex tasks that in some cases far exceed the individual capacities of a single ant. The study of ant colonies behavior and of their self-organizing capacities is interesting for computer scientists because it provides models of distributed organization which are useful to solve difficult optimization and distributed control problems. In this paper we overview some models derived from the observation of real ants, emphasizing the role played by
stigmergy as distributed communication paradigm, and we show how these models have inspired a number of novel algorithms for the solution of distributed optimization and distributed control problems.</description><subject>Ant algorithms</subject><subject>Ant colony optimization</subject><subject>Metaheuristics</subject><subject>Self-organization</subject><subject>Social insects</subject><subject>Swarm intelligence</subject><issn>0167-739X</issn><issn>1872-7115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoWEf_gUJXoovqTdMm6UqGwRcMuFChu9CmtzXSx5hkhPn3tlNx6-aezXcO9xxCLijcUKD89nU8IhIsy68ArgEgiaP8gARUijgSlKaHJPhDjsmJc58jRAWjATlf9j4s2mawxn90Liz6KnTeNB3aZndKjuqidXj2qwvy_nD_tnqK1i-Pz6vlOtIsAx8xXooE4pKlHGJZCSa5oCLhUuu6QlaOTyZMykxqprNaY8qzSXQhOU9SAWxBLufcjR2-tui86ozT2LZFj8PWqVjwWEIqRzCdQW0H5yzWamNNV9idoqCmLdR-CzUVVQBqv4XKR9_d7MOxxbdBq5w22GusjEXtVTWYfxJ-AFp6ZIc</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Dorigo, Marco</creator><creator>Bonabeau, Eric</creator><creator>Theraulaz, Guy</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2000</creationdate><title>Ant algorithms and stigmergy</title><author>Dorigo, Marco ; Bonabeau, Eric ; Theraulaz, Guy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-36b7402b356028d7386717468ccfde3b101438898c3c9fce5699fceca86645703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Ant algorithms</topic><topic>Ant colony optimization</topic><topic>Metaheuristics</topic><topic>Self-organization</topic><topic>Social insects</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorigo, Marco</creatorcontrib><creatorcontrib>Bonabeau, Eric</creatorcontrib><creatorcontrib>Theraulaz, Guy</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Future generation computer systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorigo, Marco</au><au>Bonabeau, Eric</au><au>Theraulaz, Guy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ant algorithms and stigmergy</atitle><jtitle>Future generation computer systems</jtitle><date>2000</date><risdate>2000</risdate><volume>16</volume><issue>8</issue><spage>851</spage><epage>871</epage><pages>851-871</pages><issn>0167-739X</issn><eissn>1872-7115</eissn><abstract>Ant colonies, and more generally social insect societies, are distributed systems that, in spite of the simplicity of their individuals, present a highly structured social organization. As a result of this organization, ant colonies can accomplish complex tasks that in some cases far exceed the individual capacities of a single ant. The study of ant colonies behavior and of their self-organizing capacities is interesting for computer scientists because it provides models of distributed organization which are useful to solve difficult optimization and distributed control problems. In this paper we overview some models derived from the observation of real ants, emphasizing the role played by
stigmergy as distributed communication paradigm, and we show how these models have inspired a number of novel algorithms for the solution of distributed optimization and distributed control problems.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0167-739X(00)00042-X</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-739X |
ispartof | Future generation computer systems, 2000, Vol.16 (8), p.851-871 |
issn | 0167-739X 1872-7115 |
language | eng |
recordid | cdi_proquest_miscellaneous_27628058 |
source | Access via ScienceDirect (Elsevier) |
subjects | Ant algorithms Ant colony optimization Metaheuristics Self-organization Social insects Swarm intelligence |
title | Ant algorithms and stigmergy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ant%20algorithms%20and%20stigmergy&rft.jtitle=Future%20generation%20computer%20systems&rft.au=Dorigo,%20Marco&rft.date=2000&rft.volume=16&rft.issue=8&rft.spage=851&rft.epage=871&rft.pages=851-871&rft.issn=0167-739X&rft.eissn=1872-7115&rft_id=info:doi/10.1016/S0167-739X(00)00042-X&rft_dat=%3Cproquest_cross%3E27628058%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27628058&rft_id=info:pmid/&rft_els_id=S0167739X0000042X&rfr_iscdi=true |