An extraction-based verification methodology for MEMS

Micromachining techniques are being increasingly used to develop miniaturized sensor and actuator systems. These system designs tend to be captured as layout, requiring extraction of the equivalent microelectromechanical circuit as a necessary step for design verification. This paper presents an ext...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2002-02, Vol.11 (1), p.2-11
Hauptverfasser: Baidya, B., Gupta, S.K., Mukherjee, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1
container_start_page 2
container_title Journal of microelectromechanical systems
container_volume 11
creator Baidya, B.
Gupta, S.K.
Mukherjee, T.
description Micromachining techniques are being increasingly used to develop miniaturized sensor and actuator systems. These system designs tend to be captured as layout, requiring extraction of the equivalent microelectromechanical circuit as a necessary step for design verification. This paper presents an extraction methodology to (re-)construct a circuit schematic representation from the layout, enabling the designer to use microelectromechanical circuit simulators to verify the functional behavior of the layout. This methodology uses a canonical representation of the given layout on which feature-based and graph-based recognition algorithms are applied to generate the equivalent extracted schematic. Extraction can be performed to either the atomic level or the functional level representation of the reconstructed circuit. The choice of level in hierarchy is governed by the trade off between simulation time and simulation accuracy of the extracted circuit. The combination of the MEMS layout extraction and lumped-parameter circuit simulation provides MEMS designers with VLSI-like tools enabling faster design cycles, and improved design productivity.
doi_str_mv 10.1109/84.982857
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_27624010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>982857</ieee_id><sourcerecordid>2627649241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-7caa7325eed34b83587302224504584ce499d46ea70c4870358f3186e3f266313</originalsourceid><addsrcrecordid>eNqF0UtLAzEUBeBBFKzVhVtXg-BrMTV38l6WUh_Q4kJdD2l6R6dMJzWZiv33prQouKirhOTLIdyTJKdAegBE3yrW0ypXXO4lHdAMMgJc7cc94TKTwOVhchTCjBBgTIlOwvtNil-tN7atXJNNTMBp-om-Kitr1kfpHNt3N3W1e1ulpfPpeDh-Pk4OSlMHPNmu3eT1bvgyeMhGT_ePg_4os4ySNpPWGElzjjilbKIoV5KSPM8ZJ4wrZpFpPWUCjSSWKUkiKCkogbTMhaBAu8nVJnfh3ccSQ1vMq2Cxrk2DbhkKyQTRwAmJ8nKnjCMBznP4H0qRMwLrxOudEIQESjlVNNLzP3Tmlr6Jkym00LEWKkVENxtkvQvBY1ksfDU3flUAKdbdFYoVm-6ivdgGmmBNXXrT2Cr8PqBMCC3XfzzbuAoRf663Id-gZ5wQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>969109376</pqid></control><display><type>article</type><title>An extraction-based verification methodology for MEMS</title><source>IEEE Electronic Library (IEL)</source><creator>Baidya, B. ; Gupta, S.K. ; Mukherjee, T.</creator><creatorcontrib>Baidya, B. ; Gupta, S.K. ; Mukherjee, T.</creatorcontrib><description>Micromachining techniques are being increasingly used to develop miniaturized sensor and actuator systems. These system designs tend to be captured as layout, requiring extraction of the equivalent microelectromechanical circuit as a necessary step for design verification. This paper presents an extraction methodology to (re-)construct a circuit schematic representation from the layout, enabling the designer to use microelectromechanical circuit simulators to verify the functional behavior of the layout. This methodology uses a canonical representation of the given layout on which feature-based and graph-based recognition algorithms are applied to generate the equivalent extracted schematic. Extraction can be performed to either the atomic level or the functional level representation of the reconstructed circuit. The choice of level in hierarchy is governed by the trade off between simulation time and simulation accuracy of the extracted circuit. The combination of the MEMS layout extraction and lumped-parameter circuit simulation provides MEMS designers with VLSI-like tools enabling faster design cycles, and improved design productivity.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/84.982857</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Actuators ; Algorithms ; Applied sciences ; Boundary element method ; Circuit design ; Circuit simulation ; Circuits ; Computer aided design ; Computer science; control theory; systems ; Computer simulation ; Design ; Design engineering ; Equivalent circuits ; Exact sciences and technology ; Extraction ; Finite element method ; Geometry ; Government ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Integrated circuit interconnections ; Integrated circuit layout ; Mechanical engineering. Machine design ; Mechanical instruments, equipment and techniques ; Methodology ; Microactuators ; Microelectromechanical systems ; Micromechanical devices ; Micromechanical devices and systems ; Microsensors ; Parasitic capacitance ; Physics ; Precision engineering, watch making ; Productivity ; Representations ; Schematic diagrams ; Sensor systems ; Software ; Studies ; Very large scale integration ; VLSI circuits</subject><ispartof>Journal of microelectromechanical systems, 2002-02, Vol.11 (1), p.2-11</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-7caa7325eed34b83587302224504584ce499d46ea70c4870358f3186e3f266313</citedby><cites>FETCH-LOGICAL-c430t-7caa7325eed34b83587302224504584ce499d46ea70c4870358f3186e3f266313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/982857$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/982857$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13466970$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Baidya, B.</creatorcontrib><creatorcontrib>Gupta, S.K.</creatorcontrib><creatorcontrib>Mukherjee, T.</creatorcontrib><title>An extraction-based verification methodology for MEMS</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>Micromachining techniques are being increasingly used to develop miniaturized sensor and actuator systems. These system designs tend to be captured as layout, requiring extraction of the equivalent microelectromechanical circuit as a necessary step for design verification. This paper presents an extraction methodology to (re-)construct a circuit schematic representation from the layout, enabling the designer to use microelectromechanical circuit simulators to verify the functional behavior of the layout. This methodology uses a canonical representation of the given layout on which feature-based and graph-based recognition algorithms are applied to generate the equivalent extracted schematic. Extraction can be performed to either the atomic level or the functional level representation of the reconstructed circuit. The choice of level in hierarchy is governed by the trade off between simulation time and simulation accuracy of the extracted circuit. The combination of the MEMS layout extraction and lumped-parameter circuit simulation provides MEMS designers with VLSI-like tools enabling faster design cycles, and improved design productivity.</description><subject>Actuators</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Boundary element method</subject><subject>Circuit design</subject><subject>Circuit simulation</subject><subject>Circuits</subject><subject>Computer aided design</subject><subject>Computer science; control theory; systems</subject><subject>Computer simulation</subject><subject>Design</subject><subject>Design engineering</subject><subject>Equivalent circuits</subject><subject>Exact sciences and technology</subject><subject>Extraction</subject><subject>Finite element method</subject><subject>Geometry</subject><subject>Government</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Integrated circuit interconnections</subject><subject>Integrated circuit layout</subject><subject>Mechanical engineering. Machine design</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>Methodology</subject><subject>Microactuators</subject><subject>Microelectromechanical systems</subject><subject>Micromechanical devices</subject><subject>Micromechanical devices and systems</subject><subject>Microsensors</subject><subject>Parasitic capacitance</subject><subject>Physics</subject><subject>Precision engineering, watch making</subject><subject>Productivity</subject><subject>Representations</subject><subject>Schematic diagrams</subject><subject>Sensor systems</subject><subject>Software</subject><subject>Studies</subject><subject>Very large scale integration</subject><subject>VLSI circuits</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0UtLAzEUBeBBFKzVhVtXg-BrMTV38l6WUh_Q4kJdD2l6R6dMJzWZiv33prQouKirhOTLIdyTJKdAegBE3yrW0ypXXO4lHdAMMgJc7cc94TKTwOVhchTCjBBgTIlOwvtNil-tN7atXJNNTMBp-om-Kitr1kfpHNt3N3W1e1ulpfPpeDh-Pk4OSlMHPNmu3eT1bvgyeMhGT_ePg_4os4ySNpPWGElzjjilbKIoV5KSPM8ZJ4wrZpFpPWUCjSSWKUkiKCkogbTMhaBAu8nVJnfh3ccSQ1vMq2Cxrk2DbhkKyQTRwAmJ8nKnjCMBznP4H0qRMwLrxOudEIQESjlVNNLzP3Tmlr6Jkym00LEWKkVENxtkvQvBY1ksfDU3flUAKdbdFYoVm-6ivdgGmmBNXXrT2Cr8PqBMCC3XfzzbuAoRf663Id-gZ5wQ</recordid><startdate>20020201</startdate><enddate>20020201</enddate><creator>Baidya, B.</creator><creator>Gupta, S.K.</creator><creator>Mukherjee, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope><scope>H8D</scope><scope>7TC</scope></search><sort><creationdate>20020201</creationdate><title>An extraction-based verification methodology for MEMS</title><author>Baidya, B. ; Gupta, S.K. ; Mukherjee, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-7caa7325eed34b83587302224504584ce499d46ea70c4870358f3186e3f266313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Actuators</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Boundary element method</topic><topic>Circuit design</topic><topic>Circuit simulation</topic><topic>Circuits</topic><topic>Computer aided design</topic><topic>Computer science; control theory; systems</topic><topic>Computer simulation</topic><topic>Design</topic><topic>Design engineering</topic><topic>Equivalent circuits</topic><topic>Exact sciences and technology</topic><topic>Extraction</topic><topic>Finite element method</topic><topic>Geometry</topic><topic>Government</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Integrated circuit interconnections</topic><topic>Integrated circuit layout</topic><topic>Mechanical engineering. Machine design</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>Methodology</topic><topic>Microactuators</topic><topic>Microelectromechanical systems</topic><topic>Micromechanical devices</topic><topic>Micromechanical devices and systems</topic><topic>Microsensors</topic><topic>Parasitic capacitance</topic><topic>Physics</topic><topic>Precision engineering, watch making</topic><topic>Productivity</topic><topic>Representations</topic><topic>Schematic diagrams</topic><topic>Sensor systems</topic><topic>Software</topic><topic>Studies</topic><topic>Very large scale integration</topic><topic>VLSI circuits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baidya, B.</creatorcontrib><creatorcontrib>Gupta, S.K.</creatorcontrib><creatorcontrib>Mukherjee, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Aerospace Database</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baidya, B.</au><au>Gupta, S.K.</au><au>Mukherjee, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An extraction-based verification methodology for MEMS</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2002-02-01</date><risdate>2002</risdate><volume>11</volume><issue>1</issue><spage>2</spage><epage>11</epage><pages>2-11</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>Micromachining techniques are being increasingly used to develop miniaturized sensor and actuator systems. These system designs tend to be captured as layout, requiring extraction of the equivalent microelectromechanical circuit as a necessary step for design verification. This paper presents an extraction methodology to (re-)construct a circuit schematic representation from the layout, enabling the designer to use microelectromechanical circuit simulators to verify the functional behavior of the layout. This methodology uses a canonical representation of the given layout on which feature-based and graph-based recognition algorithms are applied to generate the equivalent extracted schematic. Extraction can be performed to either the atomic level or the functional level representation of the reconstructed circuit. The choice of level in hierarchy is governed by the trade off between simulation time and simulation accuracy of the extracted circuit. The combination of the MEMS layout extraction and lumped-parameter circuit simulation provides MEMS designers with VLSI-like tools enabling faster design cycles, and improved design productivity.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/84.982857</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2002-02, Vol.11 (1), p.2-11
issn 1057-7157
1941-0158
language eng
recordid cdi_proquest_miscellaneous_27624010
source IEEE Electronic Library (IEL)
subjects Actuators
Algorithms
Applied sciences
Boundary element method
Circuit design
Circuit simulation
Circuits
Computer aided design
Computer science
control theory
systems
Computer simulation
Design
Design engineering
Equivalent circuits
Exact sciences and technology
Extraction
Finite element method
Geometry
Government
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Integrated circuit interconnections
Integrated circuit layout
Mechanical engineering. Machine design
Mechanical instruments, equipment and techniques
Methodology
Microactuators
Microelectromechanical systems
Micromechanical devices
Micromechanical devices and systems
Microsensors
Parasitic capacitance
Physics
Precision engineering, watch making
Productivity
Representations
Schematic diagrams
Sensor systems
Software
Studies
Very large scale integration
VLSI circuits
title An extraction-based verification methodology for MEMS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A55%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20extraction-based%20verification%20methodology%20for%20MEMS&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Baidya,%20B.&rft.date=2002-02-01&rft.volume=11&rft.issue=1&rft.spage=2&rft.epage=11&rft.pages=2-11&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/84.982857&rft_dat=%3Cproquest_RIE%3E2627649241%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=969109376&rft_id=info:pmid/&rft_ieee_id=982857&rfr_iscdi=true