Analysis of multilayer infinite periodic array structures with different periodicities and axes orientations

This paper presents a general procedure to analyze a multilayer array structure, where each layer may have different periodicities, different lattice structures, and/or the array axes between the layers may be nonparallel. The procedure involves the determination of a global cell with a global coord...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2000-03, Vol.48 (3), p.357-369
1. Verfasser: Bhattacharyaa, A.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 369
container_issue 3
container_start_page 357
container_title IEEE transactions on antennas and propagation
container_volume 48
creator Bhattacharyaa, A.K.
description This paper presents a general procedure to analyze a multilayer array structure, where each layer may have different periodicities, different lattice structures, and/or the array axes between the layers may be nonparallel. The procedure involves the determination of a global cell with a global coordinate system, then computations of local generalized scattering matrices (GSMs) of individual layers followed by modal mapping from local to global GSMs. The global GSMs for individual layers are then combined to characterize the entire structure. The mapping relations are derived for two layers with different lattice structures, different periodicities, and array-axes orientations. Three examples of practical importance are considered to demonstrate the methodology. The first example is a two-layered patch array with different periodicities. The second example is an array of subarrays with several patch elements within a subarray. It is shown that a subarray can be characterized rigorously by characterizing only one element of a subarray instead of analyzing all the elements of the subarray simultaneously. Consequently, the analytical and computational complexities reduce considerably. The last example is a patch array loaded with a multilayer meander-line polarizer. The patch array and the meander-line array have two different periodicities and the axes are nonparallel. Detailed radiation characteristics of the structure are presented and compared with that of a strip-grid polarizer. The computational advantages of this method are discussed.
doi_str_mv 10.1109/8.841896
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_27623903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>841896</ieee_id><sourcerecordid>914655654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-102c32d26517a2d54af41824e1f0a4c3c14c32325027b665c592e86a5964fb9c3</originalsourceid><addsrcrecordid>eNqF0U1LBCEYB3CJgrYt6NxJOlSX2dRRR4_L0hssdCnoNriOksvsuKlDzbfPZWIPHeriC_8fPvg8AJxjNMMYyVsxExQLyQ_ABDMmCkIIPgQThLAoJOFvx-AkxnW-UkHpBLTzTrVDdBF6Czd9m1yrBhOg66zrXDJwa4LzjdNQhaAGGFPodeqDifDTpXfYOGtNMF3aQ5dcDlXXQPWVDz64nKrkfBdPwZFVbTRnP_sUvN7fvSwei-Xzw9Nivix0yVkqMCK6JA3hDFeKNIwqm79EqMEWKapLjfNCSsIQqVacM80kMYIrJjm1K6nLKbge390G_9GbmOqNi9q0reqM72MtMeWMcUazvPpTktxMiYn4H1aclBKVGV7-gmvfh9zkXVkpJa0wz-hmRDr4GIOx9Ta4jQpDjVG9G2Mt6nGMmV6M1Blj9uwn_Abl6pgb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919994716</pqid></control><display><type>article</type><title>Analysis of multilayer infinite periodic array structures with different periodicities and axes orientations</title><source>IEEE Electronic Library (IEL)</source><creator>Bhattacharyaa, A.K.</creator><creatorcontrib>Bhattacharyaa, A.K.</creatorcontrib><description>This paper presents a general procedure to analyze a multilayer array structure, where each layer may have different periodicities, different lattice structures, and/or the array axes between the layers may be nonparallel. The procedure involves the determination of a global cell with a global coordinate system, then computations of local generalized scattering matrices (GSMs) of individual layers followed by modal mapping from local to global GSMs. The global GSMs for individual layers are then combined to characterize the entire structure. The mapping relations are derived for two layers with different lattice structures, different periodicities, and array-axes orientations. Three examples of practical importance are considered to demonstrate the methodology. The first example is a two-layered patch array with different periodicities. The second example is an array of subarrays with several patch elements within a subarray. It is shown that a subarray can be characterized rigorously by characterizing only one element of a subarray instead of analyzing all the elements of the subarray simultaneously. Consequently, the analytical and computational complexities reduce considerably. The last example is a patch array loaded with a multilayer meander-line polarizer. The patch array and the meander-line array have two different periodicities and the axes are nonparallel. Detailed radiation characteristics of the structure are presented and compared with that of a strip-grid polarizer. The computational advantages of this method are discussed.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/8.841896</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna arrays ; Arrays ; Blindness ; Computation ; Computational complexity ; Frequency selective surfaces ; GSM ; Lattices ; Light scattering ; Mapping ; Mathematical analysis ; Multilayers ; Nonhomogeneous media ; Optical polarization ; Orientation ; Periodic structures ; Polarizers ; Studies</subject><ispartof>IEEE transactions on antennas and propagation, 2000-03, Vol.48 (3), p.357-369</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-102c32d26517a2d54af41824e1f0a4c3c14c32325027b665c592e86a5964fb9c3</citedby><cites>FETCH-LOGICAL-c365t-102c32d26517a2d54af41824e1f0a4c3c14c32325027b665c592e86a5964fb9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/841896$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/841896$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bhattacharyaa, A.K.</creatorcontrib><title>Analysis of multilayer infinite periodic array structures with different periodicities and axes orientations</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>This paper presents a general procedure to analyze a multilayer array structure, where each layer may have different periodicities, different lattice structures, and/or the array axes between the layers may be nonparallel. The procedure involves the determination of a global cell with a global coordinate system, then computations of local generalized scattering matrices (GSMs) of individual layers followed by modal mapping from local to global GSMs. The global GSMs for individual layers are then combined to characterize the entire structure. The mapping relations are derived for two layers with different lattice structures, different periodicities, and array-axes orientations. Three examples of practical importance are considered to demonstrate the methodology. The first example is a two-layered patch array with different periodicities. The second example is an array of subarrays with several patch elements within a subarray. It is shown that a subarray can be characterized rigorously by characterizing only one element of a subarray instead of analyzing all the elements of the subarray simultaneously. Consequently, the analytical and computational complexities reduce considerably. The last example is a patch array loaded with a multilayer meander-line polarizer. The patch array and the meander-line array have two different periodicities and the axes are nonparallel. Detailed radiation characteristics of the structure are presented and compared with that of a strip-grid polarizer. The computational advantages of this method are discussed.</description><subject>Antenna arrays</subject><subject>Arrays</subject><subject>Blindness</subject><subject>Computation</subject><subject>Computational complexity</subject><subject>Frequency selective surfaces</subject><subject>GSM</subject><subject>Lattices</subject><subject>Light scattering</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Multilayers</subject><subject>Nonhomogeneous media</subject><subject>Optical polarization</subject><subject>Orientation</subject><subject>Periodic structures</subject><subject>Polarizers</subject><subject>Studies</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0U1LBCEYB3CJgrYt6NxJOlSX2dRRR4_L0hssdCnoNriOksvsuKlDzbfPZWIPHeriC_8fPvg8AJxjNMMYyVsxExQLyQ_ABDMmCkIIPgQThLAoJOFvx-AkxnW-UkHpBLTzTrVDdBF6Czd9m1yrBhOg66zrXDJwa4LzjdNQhaAGGFPodeqDifDTpXfYOGtNMF3aQ5dcDlXXQPWVDz64nKrkfBdPwZFVbTRnP_sUvN7fvSwei-Xzw9Nivix0yVkqMCK6JA3hDFeKNIwqm79EqMEWKapLjfNCSsIQqVacM80kMYIrJjm1K6nLKbge390G_9GbmOqNi9q0reqM72MtMeWMcUazvPpTktxMiYn4H1aclBKVGV7-gmvfh9zkXVkpJa0wz-hmRDr4GIOx9Ta4jQpDjVG9G2Mt6nGMmV6M1Blj9uwn_Abl6pgb</recordid><startdate>20000301</startdate><enddate>20000301</enddate><creator>Bhattacharyaa, A.K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>H8D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20000301</creationdate><title>Analysis of multilayer infinite periodic array structures with different periodicities and axes orientations</title><author>Bhattacharyaa, A.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-102c32d26517a2d54af41824e1f0a4c3c14c32325027b665c592e86a5964fb9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Antenna arrays</topic><topic>Arrays</topic><topic>Blindness</topic><topic>Computation</topic><topic>Computational complexity</topic><topic>Frequency selective surfaces</topic><topic>GSM</topic><topic>Lattices</topic><topic>Light scattering</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Multilayers</topic><topic>Nonhomogeneous media</topic><topic>Optical polarization</topic><topic>Orientation</topic><topic>Periodic structures</topic><topic>Polarizers</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhattacharyaa, A.K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bhattacharyaa, A.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of multilayer infinite periodic array structures with different periodicities and axes orientations</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2000-03-01</date><risdate>2000</risdate><volume>48</volume><issue>3</issue><spage>357</spage><epage>369</epage><pages>357-369</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>This paper presents a general procedure to analyze a multilayer array structure, where each layer may have different periodicities, different lattice structures, and/or the array axes between the layers may be nonparallel. The procedure involves the determination of a global cell with a global coordinate system, then computations of local generalized scattering matrices (GSMs) of individual layers followed by modal mapping from local to global GSMs. The global GSMs for individual layers are then combined to characterize the entire structure. The mapping relations are derived for two layers with different lattice structures, different periodicities, and array-axes orientations. Three examples of practical importance are considered to demonstrate the methodology. The first example is a two-layered patch array with different periodicities. The second example is an array of subarrays with several patch elements within a subarray. It is shown that a subarray can be characterized rigorously by characterizing only one element of a subarray instead of analyzing all the elements of the subarray simultaneously. Consequently, the analytical and computational complexities reduce considerably. The last example is a patch array loaded with a multilayer meander-line polarizer. The patch array and the meander-line array have two different periodicities and the axes are nonparallel. Detailed radiation characteristics of the structure are presented and compared with that of a strip-grid polarizer. The computational advantages of this method are discussed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/8.841896</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2000-03, Vol.48 (3), p.357-369
issn 0018-926X
1558-2221
language eng
recordid cdi_proquest_miscellaneous_27623903
source IEEE Electronic Library (IEL)
subjects Antenna arrays
Arrays
Blindness
Computation
Computational complexity
Frequency selective surfaces
GSM
Lattices
Light scattering
Mapping
Mathematical analysis
Multilayers
Nonhomogeneous media
Optical polarization
Orientation
Periodic structures
Polarizers
Studies
title Analysis of multilayer infinite periodic array structures with different periodicities and axes orientations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20multilayer%20infinite%20periodic%20array%20structures%20with%20different%20periodicities%20and%20axes%20orientations&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Bhattacharyaa,%20A.K.&rft.date=2000-03-01&rft.volume=48&rft.issue=3&rft.spage=357&rft.epage=369&rft.pages=357-369&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/8.841896&rft_dat=%3Cproquest_RIE%3E914655654%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919994716&rft_id=info:pmid/&rft_ieee_id=841896&rfr_iscdi=true