Analysis of multilayer infinite periodic array structures with different periodicities and axes orientations
This paper presents a general procedure to analyze a multilayer array structure, where each layer may have different periodicities, different lattice structures, and/or the array axes between the layers may be nonparallel. The procedure involves the determination of a global cell with a global coord...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2000-03, Vol.48 (3), p.357-369 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 369 |
---|---|
container_issue | 3 |
container_start_page | 357 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 48 |
creator | Bhattacharyaa, A.K. |
description | This paper presents a general procedure to analyze a multilayer array structure, where each layer may have different periodicities, different lattice structures, and/or the array axes between the layers may be nonparallel. The procedure involves the determination of a global cell with a global coordinate system, then computations of local generalized scattering matrices (GSMs) of individual layers followed by modal mapping from local to global GSMs. The global GSMs for individual layers are then combined to characterize the entire structure. The mapping relations are derived for two layers with different lattice structures, different periodicities, and array-axes orientations. Three examples of practical importance are considered to demonstrate the methodology. The first example is a two-layered patch array with different periodicities. The second example is an array of subarrays with several patch elements within a subarray. It is shown that a subarray can be characterized rigorously by characterizing only one element of a subarray instead of analyzing all the elements of the subarray simultaneously. Consequently, the analytical and computational complexities reduce considerably. The last example is a patch array loaded with a multilayer meander-line polarizer. The patch array and the meander-line array have two different periodicities and the axes are nonparallel. Detailed radiation characteristics of the structure are presented and compared with that of a strip-grid polarizer. The computational advantages of this method are discussed. |
doi_str_mv | 10.1109/8.841896 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_27623903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>841896</ieee_id><sourcerecordid>914655654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-102c32d26517a2d54af41824e1f0a4c3c14c32325027b665c592e86a5964fb9c3</originalsourceid><addsrcrecordid>eNqF0U1LBCEYB3CJgrYt6NxJOlSX2dRRR4_L0hssdCnoNriOksvsuKlDzbfPZWIPHeriC_8fPvg8AJxjNMMYyVsxExQLyQ_ABDMmCkIIPgQThLAoJOFvx-AkxnW-UkHpBLTzTrVDdBF6Czd9m1yrBhOg66zrXDJwa4LzjdNQhaAGGFPodeqDifDTpXfYOGtNMF3aQ5dcDlXXQPWVDz64nKrkfBdPwZFVbTRnP_sUvN7fvSwei-Xzw9Nivix0yVkqMCK6JA3hDFeKNIwqm79EqMEWKapLjfNCSsIQqVacM80kMYIrJjm1K6nLKbge390G_9GbmOqNi9q0reqM72MtMeWMcUazvPpTktxMiYn4H1aclBKVGV7-gmvfh9zkXVkpJa0wz-hmRDr4GIOx9Ta4jQpDjVG9G2Mt6nGMmV6M1Blj9uwn_Abl6pgb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919994716</pqid></control><display><type>article</type><title>Analysis of multilayer infinite periodic array structures with different periodicities and axes orientations</title><source>IEEE Electronic Library (IEL)</source><creator>Bhattacharyaa, A.K.</creator><creatorcontrib>Bhattacharyaa, A.K.</creatorcontrib><description>This paper presents a general procedure to analyze a multilayer array structure, where each layer may have different periodicities, different lattice structures, and/or the array axes between the layers may be nonparallel. The procedure involves the determination of a global cell with a global coordinate system, then computations of local generalized scattering matrices (GSMs) of individual layers followed by modal mapping from local to global GSMs. The global GSMs for individual layers are then combined to characterize the entire structure. The mapping relations are derived for two layers with different lattice structures, different periodicities, and array-axes orientations. Three examples of practical importance are considered to demonstrate the methodology. The first example is a two-layered patch array with different periodicities. The second example is an array of subarrays with several patch elements within a subarray. It is shown that a subarray can be characterized rigorously by characterizing only one element of a subarray instead of analyzing all the elements of the subarray simultaneously. Consequently, the analytical and computational complexities reduce considerably. The last example is a patch array loaded with a multilayer meander-line polarizer. The patch array and the meander-line array have two different periodicities and the axes are nonparallel. Detailed radiation characteristics of the structure are presented and compared with that of a strip-grid polarizer. The computational advantages of this method are discussed.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/8.841896</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna arrays ; Arrays ; Blindness ; Computation ; Computational complexity ; Frequency selective surfaces ; GSM ; Lattices ; Light scattering ; Mapping ; Mathematical analysis ; Multilayers ; Nonhomogeneous media ; Optical polarization ; Orientation ; Periodic structures ; Polarizers ; Studies</subject><ispartof>IEEE transactions on antennas and propagation, 2000-03, Vol.48 (3), p.357-369</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-102c32d26517a2d54af41824e1f0a4c3c14c32325027b665c592e86a5964fb9c3</citedby><cites>FETCH-LOGICAL-c365t-102c32d26517a2d54af41824e1f0a4c3c14c32325027b665c592e86a5964fb9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/841896$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/841896$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bhattacharyaa, A.K.</creatorcontrib><title>Analysis of multilayer infinite periodic array structures with different periodicities and axes orientations</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>This paper presents a general procedure to analyze a multilayer array structure, where each layer may have different periodicities, different lattice structures, and/or the array axes between the layers may be nonparallel. The procedure involves the determination of a global cell with a global coordinate system, then computations of local generalized scattering matrices (GSMs) of individual layers followed by modal mapping from local to global GSMs. The global GSMs for individual layers are then combined to characterize the entire structure. The mapping relations are derived for two layers with different lattice structures, different periodicities, and array-axes orientations. Three examples of practical importance are considered to demonstrate the methodology. The first example is a two-layered patch array with different periodicities. The second example is an array of subarrays with several patch elements within a subarray. It is shown that a subarray can be characterized rigorously by characterizing only one element of a subarray instead of analyzing all the elements of the subarray simultaneously. Consequently, the analytical and computational complexities reduce considerably. The last example is a patch array loaded with a multilayer meander-line polarizer. The patch array and the meander-line array have two different periodicities and the axes are nonparallel. Detailed radiation characteristics of the structure are presented and compared with that of a strip-grid polarizer. The computational advantages of this method are discussed.</description><subject>Antenna arrays</subject><subject>Arrays</subject><subject>Blindness</subject><subject>Computation</subject><subject>Computational complexity</subject><subject>Frequency selective surfaces</subject><subject>GSM</subject><subject>Lattices</subject><subject>Light scattering</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Multilayers</subject><subject>Nonhomogeneous media</subject><subject>Optical polarization</subject><subject>Orientation</subject><subject>Periodic structures</subject><subject>Polarizers</subject><subject>Studies</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0U1LBCEYB3CJgrYt6NxJOlSX2dRRR4_L0hssdCnoNriOksvsuKlDzbfPZWIPHeriC_8fPvg8AJxjNMMYyVsxExQLyQ_ABDMmCkIIPgQThLAoJOFvx-AkxnW-UkHpBLTzTrVDdBF6Czd9m1yrBhOg66zrXDJwa4LzjdNQhaAGGFPodeqDifDTpXfYOGtNMF3aQ5dcDlXXQPWVDz64nKrkfBdPwZFVbTRnP_sUvN7fvSwei-Xzw9Nivix0yVkqMCK6JA3hDFeKNIwqm79EqMEWKapLjfNCSsIQqVacM80kMYIrJjm1K6nLKbge390G_9GbmOqNi9q0reqM72MtMeWMcUazvPpTktxMiYn4H1aclBKVGV7-gmvfh9zkXVkpJa0wz-hmRDr4GIOx9Ta4jQpDjVG9G2Mt6nGMmV6M1Blj9uwn_Abl6pgb</recordid><startdate>20000301</startdate><enddate>20000301</enddate><creator>Bhattacharyaa, A.K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>H8D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20000301</creationdate><title>Analysis of multilayer infinite periodic array structures with different periodicities and axes orientations</title><author>Bhattacharyaa, A.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-102c32d26517a2d54af41824e1f0a4c3c14c32325027b665c592e86a5964fb9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Antenna arrays</topic><topic>Arrays</topic><topic>Blindness</topic><topic>Computation</topic><topic>Computational complexity</topic><topic>Frequency selective surfaces</topic><topic>GSM</topic><topic>Lattices</topic><topic>Light scattering</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Multilayers</topic><topic>Nonhomogeneous media</topic><topic>Optical polarization</topic><topic>Orientation</topic><topic>Periodic structures</topic><topic>Polarizers</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhattacharyaa, A.K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bhattacharyaa, A.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of multilayer infinite periodic array structures with different periodicities and axes orientations</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2000-03-01</date><risdate>2000</risdate><volume>48</volume><issue>3</issue><spage>357</spage><epage>369</epage><pages>357-369</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>This paper presents a general procedure to analyze a multilayer array structure, where each layer may have different periodicities, different lattice structures, and/or the array axes between the layers may be nonparallel. The procedure involves the determination of a global cell with a global coordinate system, then computations of local generalized scattering matrices (GSMs) of individual layers followed by modal mapping from local to global GSMs. The global GSMs for individual layers are then combined to characterize the entire structure. The mapping relations are derived for two layers with different lattice structures, different periodicities, and array-axes orientations. Three examples of practical importance are considered to demonstrate the methodology. The first example is a two-layered patch array with different periodicities. The second example is an array of subarrays with several patch elements within a subarray. It is shown that a subarray can be characterized rigorously by characterizing only one element of a subarray instead of analyzing all the elements of the subarray simultaneously. Consequently, the analytical and computational complexities reduce considerably. The last example is a patch array loaded with a multilayer meander-line polarizer. The patch array and the meander-line array have two different periodicities and the axes are nonparallel. Detailed radiation characteristics of the structure are presented and compared with that of a strip-grid polarizer. The computational advantages of this method are discussed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/8.841896</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2000-03, Vol.48 (3), p.357-369 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_proquest_miscellaneous_27623903 |
source | IEEE Electronic Library (IEL) |
subjects | Antenna arrays Arrays Blindness Computation Computational complexity Frequency selective surfaces GSM Lattices Light scattering Mapping Mathematical analysis Multilayers Nonhomogeneous media Optical polarization Orientation Periodic structures Polarizers Studies |
title | Analysis of multilayer infinite periodic array structures with different periodicities and axes orientations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20multilayer%20infinite%20periodic%20array%20structures%20with%20different%20periodicities%20and%20axes%20orientations&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Bhattacharyaa,%20A.K.&rft.date=2000-03-01&rft.volume=48&rft.issue=3&rft.spage=357&rft.epage=369&rft.pages=357-369&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/8.841896&rft_dat=%3Cproquest_RIE%3E914655654%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919994716&rft_id=info:pmid/&rft_ieee_id=841896&rfr_iscdi=true |