Enhanced Li-Ion Diffusion and Cycling Stability of Ni-Free High-Entropy Spinel Oxide Anodes with High-Concentration Oxygen Vacancies

High-entropy oxide (HEO) is an emerging type of anode material for lithium-ion batteries with excellent properties, where high-concentration oxygen vacancies can effectively enhance the diffusion coefficient of lithium ions. In this study, Ni-free spinel-type HEOs ((FeCoCrMnZn)3O4 and (FeCoCrMnMg)3O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-01, Vol.15 (2), p.2792-2803
Hauptverfasser: Xiao, Bin, Wu, Gang, Wang, Tongde, Wei, Zhengang, Xie, Zelin, Sui, Yanwei, Qi, Jiqiu, Wei, Fuxiang, Zhang, Xiahui, Tang, Lin-bo, Zheng, Jun-chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2803
container_issue 2
container_start_page 2792
container_title ACS applied materials & interfaces
container_volume 15
creator Xiao, Bin
Wu, Gang
Wang, Tongde
Wei, Zhengang
Xie, Zelin
Sui, Yanwei
Qi, Jiqiu
Wei, Fuxiang
Zhang, Xiahui
Tang, Lin-bo
Zheng, Jun-chao
description High-entropy oxide (HEO) is an emerging type of anode material for lithium-ion batteries with excellent properties, where high-concentration oxygen vacancies can effectively enhance the diffusion coefficient of lithium ions. In this study, Ni-free spinel-type HEOs ((FeCoCrMnZn)3O4 and (FeCoCrMnMg)3O4) were prepared via ball milling, and the effects of zinc and magnesium on the concentration of oxygen vacancy (OV), lithium-ion diffusion coefficient (D Li+ ), and electrochemical performance of HEOs were investigated. Ab initio calculations show that the addition of zinc narrows down the band gap and thus improves the electrical conductivity. X-ray photoelectron spectroscopy (XPS) results show that (FeCoCrMnZn)3O4 (42.7%) and (FeCoCrMnMg)3O4 (42.5%) have high OV concentration. During charge/discharge, the OV concentration of (FeCoCrMnZn)3O4 is higher than that of (FeCoCrMnMg)3O4. The galvanostatic intermittent titration technique (GITT) results show that the D Li+ value of (FeCoCrMnZn)3O4 is higher than that of (FeCoCrMnMg)3O4 during charge and discharge. All of that can improve its specific discharge capacity and enhance its cycle stability. (FeCoCrMnZn)3O4 achieved a discharge capacity of 828.6 mAh g–1 at 2.0 A g–1 after 2000 cycles. This work provides a deep understanding of the structure and performance of HEO.
doi_str_mv 10.1021/acsami.2c12374
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2761986625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2761986625</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-26002aa594b02c80bd77cf732fa2c1dd4885b45b6968ad477b458e120f0533ef3</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EoqWwMiKPCCnFsR07HatSHlJFBx5r5PjRGqV2iRNBdn44rlK6Md1zpe-eo3sAuEzROEU4vRUyiI0dY5liwukRGKYTSpMcZ_j4oCkdgLMQPhBiBKPsFAwIY4gxzofgZ-7Wwkmt4MImT97BO2tMG2xUwik462Rl3Qq-NKK0lW066A18tsl9rTV8tKt1MndN7bcdfNlapyu4_LZKw6nzSgf4ZZt1T818zIikaHbOy-9upR18FzJGWx3OwYkRVdAX-zkCb_fz19ljslg-PM2mi0QQgpoEM4SwENmElgjLHJWKc2k4wUbE_5WieZ6VNCvZhOVCUc7jkusUI4MyQrQhI3Dd-25r_9nq0BQbG6SuKuG0b0OBOUsnOWM4i-i4R2XtQ6i1Kba13Yi6K1JU7Jov-uaLffPx4Grv3ZYbrQ74X9URuOmBeFh8-LZ28dX_3H4BCSaOOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761986625</pqid></control><display><type>article</type><title>Enhanced Li-Ion Diffusion and Cycling Stability of Ni-Free High-Entropy Spinel Oxide Anodes with High-Concentration Oxygen Vacancies</title><source>American Chemical Society Journals</source><creator>Xiao, Bin ; Wu, Gang ; Wang, Tongde ; Wei, Zhengang ; Xie, Zelin ; Sui, Yanwei ; Qi, Jiqiu ; Wei, Fuxiang ; Zhang, Xiahui ; Tang, Lin-bo ; Zheng, Jun-chao</creator><creatorcontrib>Xiao, Bin ; Wu, Gang ; Wang, Tongde ; Wei, Zhengang ; Xie, Zelin ; Sui, Yanwei ; Qi, Jiqiu ; Wei, Fuxiang ; Zhang, Xiahui ; Tang, Lin-bo ; Zheng, Jun-chao</creatorcontrib><description>High-entropy oxide (HEO) is an emerging type of anode material for lithium-ion batteries with excellent properties, where high-concentration oxygen vacancies can effectively enhance the diffusion coefficient of lithium ions. In this study, Ni-free spinel-type HEOs ((FeCoCrMnZn)3O4 and (FeCoCrMnMg)3O4) were prepared via ball milling, and the effects of zinc and magnesium on the concentration of oxygen vacancy (OV), lithium-ion diffusion coefficient (D Li+ ), and electrochemical performance of HEOs were investigated. Ab initio calculations show that the addition of zinc narrows down the band gap and thus improves the electrical conductivity. X-ray photoelectron spectroscopy (XPS) results show that (FeCoCrMnZn)3O4 (42.7%) and (FeCoCrMnMg)3O4 (42.5%) have high OV concentration. During charge/discharge, the OV concentration of (FeCoCrMnZn)3O4 is higher than that of (FeCoCrMnMg)3O4. The galvanostatic intermittent titration technique (GITT) results show that the D Li+ value of (FeCoCrMnZn)3O4 is higher than that of (FeCoCrMnMg)3O4 during charge and discharge. All of that can improve its specific discharge capacity and enhance its cycle stability. (FeCoCrMnZn)3O4 achieved a discharge capacity of 828.6 mAh g–1 at 2.0 A g–1 after 2000 cycles. This work provides a deep understanding of the structure and performance of HEO.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c12374</identifier><identifier>PMID: 36606677</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2023-01, Vol.15 (2), p.2792-2803</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-26002aa594b02c80bd77cf732fa2c1dd4885b45b6968ad477b458e120f0533ef3</citedby><cites>FETCH-LOGICAL-a330t-26002aa594b02c80bd77cf732fa2c1dd4885b45b6968ad477b458e120f0533ef3</cites><orcidid>0000-0002-5740-6111 ; 0000-0002-9122-7598 ; 0000-0002-7530-8590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c12374$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c12374$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36606677$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Bin</creatorcontrib><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Wang, Tongde</creatorcontrib><creatorcontrib>Wei, Zhengang</creatorcontrib><creatorcontrib>Xie, Zelin</creatorcontrib><creatorcontrib>Sui, Yanwei</creatorcontrib><creatorcontrib>Qi, Jiqiu</creatorcontrib><creatorcontrib>Wei, Fuxiang</creatorcontrib><creatorcontrib>Zhang, Xiahui</creatorcontrib><creatorcontrib>Tang, Lin-bo</creatorcontrib><creatorcontrib>Zheng, Jun-chao</creatorcontrib><title>Enhanced Li-Ion Diffusion and Cycling Stability of Ni-Free High-Entropy Spinel Oxide Anodes with High-Concentration Oxygen Vacancies</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>High-entropy oxide (HEO) is an emerging type of anode material for lithium-ion batteries with excellent properties, where high-concentration oxygen vacancies can effectively enhance the diffusion coefficient of lithium ions. In this study, Ni-free spinel-type HEOs ((FeCoCrMnZn)3O4 and (FeCoCrMnMg)3O4) were prepared via ball milling, and the effects of zinc and magnesium on the concentration of oxygen vacancy (OV), lithium-ion diffusion coefficient (D Li+ ), and electrochemical performance of HEOs were investigated. Ab initio calculations show that the addition of zinc narrows down the band gap and thus improves the electrical conductivity. X-ray photoelectron spectroscopy (XPS) results show that (FeCoCrMnZn)3O4 (42.7%) and (FeCoCrMnMg)3O4 (42.5%) have high OV concentration. During charge/discharge, the OV concentration of (FeCoCrMnZn)3O4 is higher than that of (FeCoCrMnMg)3O4. The galvanostatic intermittent titration technique (GITT) results show that the D Li+ value of (FeCoCrMnZn)3O4 is higher than that of (FeCoCrMnMg)3O4 during charge and discharge. All of that can improve its specific discharge capacity and enhance its cycle stability. (FeCoCrMnZn)3O4 achieved a discharge capacity of 828.6 mAh g–1 at 2.0 A g–1 after 2000 cycles. This work provides a deep understanding of the structure and performance of HEO.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EoqWwMiKPCCnFsR07HatSHlJFBx5r5PjRGqV2iRNBdn44rlK6Md1zpe-eo3sAuEzROEU4vRUyiI0dY5liwukRGKYTSpMcZ_j4oCkdgLMQPhBiBKPsFAwIY4gxzofgZ-7Wwkmt4MImT97BO2tMG2xUwik462Rl3Qq-NKK0lW066A18tsl9rTV8tKt1MndN7bcdfNlapyu4_LZKw6nzSgf4ZZt1T818zIikaHbOy-9upR18FzJGWx3OwYkRVdAX-zkCb_fz19ljslg-PM2mi0QQgpoEM4SwENmElgjLHJWKc2k4wUbE_5WieZ6VNCvZhOVCUc7jkusUI4MyQrQhI3Dd-25r_9nq0BQbG6SuKuG0b0OBOUsnOWM4i-i4R2XtQ6i1Kba13Yi6K1JU7Jov-uaLffPx4Grv3ZYbrQ74X9URuOmBeFh8-LZ28dX_3H4BCSaOOQ</recordid><startdate>20230118</startdate><enddate>20230118</enddate><creator>Xiao, Bin</creator><creator>Wu, Gang</creator><creator>Wang, Tongde</creator><creator>Wei, Zhengang</creator><creator>Xie, Zelin</creator><creator>Sui, Yanwei</creator><creator>Qi, Jiqiu</creator><creator>Wei, Fuxiang</creator><creator>Zhang, Xiahui</creator><creator>Tang, Lin-bo</creator><creator>Zheng, Jun-chao</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5740-6111</orcidid><orcidid>https://orcid.org/0000-0002-9122-7598</orcidid><orcidid>https://orcid.org/0000-0002-7530-8590</orcidid></search><sort><creationdate>20230118</creationdate><title>Enhanced Li-Ion Diffusion and Cycling Stability of Ni-Free High-Entropy Spinel Oxide Anodes with High-Concentration Oxygen Vacancies</title><author>Xiao, Bin ; Wu, Gang ; Wang, Tongde ; Wei, Zhengang ; Xie, Zelin ; Sui, Yanwei ; Qi, Jiqiu ; Wei, Fuxiang ; Zhang, Xiahui ; Tang, Lin-bo ; Zheng, Jun-chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-26002aa594b02c80bd77cf732fa2c1dd4885b45b6968ad477b458e120f0533ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Bin</creatorcontrib><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Wang, Tongde</creatorcontrib><creatorcontrib>Wei, Zhengang</creatorcontrib><creatorcontrib>Xie, Zelin</creatorcontrib><creatorcontrib>Sui, Yanwei</creatorcontrib><creatorcontrib>Qi, Jiqiu</creatorcontrib><creatorcontrib>Wei, Fuxiang</creatorcontrib><creatorcontrib>Zhang, Xiahui</creatorcontrib><creatorcontrib>Tang, Lin-bo</creatorcontrib><creatorcontrib>Zheng, Jun-chao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Bin</au><au>Wu, Gang</au><au>Wang, Tongde</au><au>Wei, Zhengang</au><au>Xie, Zelin</au><au>Sui, Yanwei</au><au>Qi, Jiqiu</au><au>Wei, Fuxiang</au><au>Zhang, Xiahui</au><au>Tang, Lin-bo</au><au>Zheng, Jun-chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Li-Ion Diffusion and Cycling Stability of Ni-Free High-Entropy Spinel Oxide Anodes with High-Concentration Oxygen Vacancies</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-01-18</date><risdate>2023</risdate><volume>15</volume><issue>2</issue><spage>2792</spage><epage>2803</epage><pages>2792-2803</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>High-entropy oxide (HEO) is an emerging type of anode material for lithium-ion batteries with excellent properties, where high-concentration oxygen vacancies can effectively enhance the diffusion coefficient of lithium ions. In this study, Ni-free spinel-type HEOs ((FeCoCrMnZn)3O4 and (FeCoCrMnMg)3O4) were prepared via ball milling, and the effects of zinc and magnesium on the concentration of oxygen vacancy (OV), lithium-ion diffusion coefficient (D Li+ ), and electrochemical performance of HEOs were investigated. Ab initio calculations show that the addition of zinc narrows down the band gap and thus improves the electrical conductivity. X-ray photoelectron spectroscopy (XPS) results show that (FeCoCrMnZn)3O4 (42.7%) and (FeCoCrMnMg)3O4 (42.5%) have high OV concentration. During charge/discharge, the OV concentration of (FeCoCrMnZn)3O4 is higher than that of (FeCoCrMnMg)3O4. The galvanostatic intermittent titration technique (GITT) results show that the D Li+ value of (FeCoCrMnZn)3O4 is higher than that of (FeCoCrMnMg)3O4 during charge and discharge. All of that can improve its specific discharge capacity and enhance its cycle stability. (FeCoCrMnZn)3O4 achieved a discharge capacity of 828.6 mAh g–1 at 2.0 A g–1 after 2000 cycles. This work provides a deep understanding of the structure and performance of HEO.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36606677</pmid><doi>10.1021/acsami.2c12374</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5740-6111</orcidid><orcidid>https://orcid.org/0000-0002-9122-7598</orcidid><orcidid>https://orcid.org/0000-0002-7530-8590</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-01, Vol.15 (2), p.2792-2803
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2761986625
source American Chemical Society Journals
subjects Energy, Environmental, and Catalysis Applications
title Enhanced Li-Ion Diffusion and Cycling Stability of Ni-Free High-Entropy Spinel Oxide Anodes with High-Concentration Oxygen Vacancies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A37%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Li-Ion%20Diffusion%20and%20Cycling%20Stability%20of%20Ni-Free%20High-Entropy%20Spinel%20Oxide%20Anodes%20with%20High-Concentration%20Oxygen%20Vacancies&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Xiao,%20Bin&rft.date=2023-01-18&rft.volume=15&rft.issue=2&rft.spage=2792&rft.epage=2803&rft.pages=2792-2803&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c12374&rft_dat=%3Cproquest_cross%3E2761986625%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761986625&rft_id=info:pmid/36606677&rfr_iscdi=true