Phosphorylation Regulation Mechanism of β2 Integrin for the Binding of Filamin Revealed by Markov State Model
Leukocyte adhesion deficiency-1 (LAD-1) disorder is a severe immunodeficiency syndrome caused by deficiency or mutation of β2 integrin. The phosphorylation on threonine 758 of β2 integrin acts as a molecular switch inhibiting the binding of filamin. However, the switch mechanism of site-specific pho...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2023-01, Vol.63 (2), p.605-618 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 618 |
---|---|
container_issue | 2 |
container_start_page | 605 |
container_title | Journal of chemical information and modeling |
container_volume | 63 |
creator | Hong, Xiaokun Song, Kaiyuan Rahman, Mueed Ur Wei, Ting Zhang, Yan Da, Lin-Tai Chen, Hai-Feng |
description | Leukocyte adhesion deficiency-1 (LAD-1) disorder is a severe immunodeficiency syndrome caused by deficiency or mutation of β2 integrin. The phosphorylation on threonine 758 of β2 integrin acts as a molecular switch inhibiting the binding of filamin. However, the switch mechanism of site-specific phosphorylation at the atom level is still poorly understood. To resolve the regulation mechanism, all-atom molecular dynamics simulation and Markov state model were used to study the dynamic regulation pathway of phosphorylation. Wild type system possessed lower binding free energy and fewer number of states than the phosphorylated system. Both systems underwent local disorder-to-order conformation conversion when achieving steady states. To reach steady states, wild type adopted less number of transition paths/shortest path according to the transition path theory than the phosphorylated system. The underlying phosphorylated regulation pathway was from P1 to P0 and then P4 state, and the main driving force should be hydrogen bond and hydrophobic interaction disturbing the secondary structure of phosphorylated states. These studies will shed light on the pathogenesis of LAD-1 disease and lay a foundation for drug development. |
doi_str_mv | 10.1021/acs.jcim.2c01177 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2761985643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2761985643</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-9ba7396864e165aab532062c182d70b24446fe8cf605a736bbe6eebb904871453</originalsourceid><addsrcrecordid>eNp1kc1OwzAQhC0EouXnzglZ4sKBFttxnOQIFQUkKhA_ErfITjatS2IXO0Hqa_EgPBMJbTkgcfJK_mZ2tIPQESVDShg9l5kfzjNdDVlGKI2iLdSnIU8GiSCv25s5TEQP7Xk_JyQIEsF2US8QgkSM8z4yDzPrFzPrlqWstTX4EabNepxANpNG-wrbAn99Mnxrapg6bXBhHa5ngC-1ybWZdv9jXcpKd_oPkCXkWC3xRLo3-4GfalkDntgcygO0U8jSw-H63Ucv46vn0c3g7v76dnRxN5CB4PUgUTJqo8aCAxWhlCoMGBEsozHLI6La5FwUEGeFIGFLCqVAACiVEB5HlIfBPjpd-S6cfW_A12mlfQZlKQ3YxqcsEjSJQ8GDFj35g85t40ybrqMSJgIadhRZUZmz3jso0oXTlXTLlJK06yJtu0i7LtJ1F63keG3cqAryX8Hm-C1wtgJ-pJul__p9Aw4dlUU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769263153</pqid></control><display><type>article</type><title>Phosphorylation Regulation Mechanism of β2 Integrin for the Binding of Filamin Revealed by Markov State Model</title><source>MEDLINE</source><source>ACS Publications</source><creator>Hong, Xiaokun ; Song, Kaiyuan ; Rahman, Mueed Ur ; Wei, Ting ; Zhang, Yan ; Da, Lin-Tai ; Chen, Hai-Feng</creator><creatorcontrib>Hong, Xiaokun ; Song, Kaiyuan ; Rahman, Mueed Ur ; Wei, Ting ; Zhang, Yan ; Da, Lin-Tai ; Chen, Hai-Feng</creatorcontrib><description>Leukocyte adhesion deficiency-1 (LAD-1) disorder is a severe immunodeficiency syndrome caused by deficiency or mutation of β2 integrin. The phosphorylation on threonine 758 of β2 integrin acts as a molecular switch inhibiting the binding of filamin. However, the switch mechanism of site-specific phosphorylation at the atom level is still poorly understood. To resolve the regulation mechanism, all-atom molecular dynamics simulation and Markov state model were used to study the dynamic regulation pathway of phosphorylation. Wild type system possessed lower binding free energy and fewer number of states than the phosphorylated system. Both systems underwent local disorder-to-order conformation conversion when achieving steady states. To reach steady states, wild type adopted less number of transition paths/shortest path according to the transition path theory than the phosphorylated system. The underlying phosphorylated regulation pathway was from P1 to P0 and then P4 state, and the main driving force should be hydrogen bond and hydrophobic interaction disturbing the secondary structure of phosphorylated states. These studies will shed light on the pathogenesis of LAD-1 disease and lay a foundation for drug development.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.2c01177</identifier><identifier>PMID: 36607244</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Binding ; CD18 Antigens - chemistry ; CD18 Antigens - genetics ; CD18 Antigens - metabolism ; Computational Biochemistry ; Filamins - chemistry ; Filamins - metabolism ; Free energy ; Hydrogen bonds ; Hydrophobicity ; Kinases ; Leukocytes ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular machines ; Mutation ; Pathogenesis ; Phosphorylation ; Steady state</subject><ispartof>Journal of chemical information and modeling, 2023-01, Vol.63 (2), p.605-618</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Jan 23, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-9ba7396864e165aab532062c182d70b24446fe8cf605a736bbe6eebb904871453</citedby><cites>FETCH-LOGICAL-a364t-9ba7396864e165aab532062c182d70b24446fe8cf605a736bbe6eebb904871453</cites><orcidid>0000-0002-7496-4182 ; 0000-0002-1589-5754 ; 0000-0002-4215-3684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.2c01177$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.2c01177$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36607244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hong, Xiaokun</creatorcontrib><creatorcontrib>Song, Kaiyuan</creatorcontrib><creatorcontrib>Rahman, Mueed Ur</creatorcontrib><creatorcontrib>Wei, Ting</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Da, Lin-Tai</creatorcontrib><creatorcontrib>Chen, Hai-Feng</creatorcontrib><title>Phosphorylation Regulation Mechanism of β2 Integrin for the Binding of Filamin Revealed by Markov State Model</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Leukocyte adhesion deficiency-1 (LAD-1) disorder is a severe immunodeficiency syndrome caused by deficiency or mutation of β2 integrin. The phosphorylation on threonine 758 of β2 integrin acts as a molecular switch inhibiting the binding of filamin. However, the switch mechanism of site-specific phosphorylation at the atom level is still poorly understood. To resolve the regulation mechanism, all-atom molecular dynamics simulation and Markov state model were used to study the dynamic regulation pathway of phosphorylation. Wild type system possessed lower binding free energy and fewer number of states than the phosphorylated system. Both systems underwent local disorder-to-order conformation conversion when achieving steady states. To reach steady states, wild type adopted less number of transition paths/shortest path according to the transition path theory than the phosphorylated system. The underlying phosphorylated regulation pathway was from P1 to P0 and then P4 state, and the main driving force should be hydrogen bond and hydrophobic interaction disturbing the secondary structure of phosphorylated states. These studies will shed light on the pathogenesis of LAD-1 disease and lay a foundation for drug development.</description><subject>Binding</subject><subject>CD18 Antigens - chemistry</subject><subject>CD18 Antigens - genetics</subject><subject>CD18 Antigens - metabolism</subject><subject>Computational Biochemistry</subject><subject>Filamins - chemistry</subject><subject>Filamins - metabolism</subject><subject>Free energy</subject><subject>Hydrogen bonds</subject><subject>Hydrophobicity</subject><subject>Kinases</subject><subject>Leukocytes</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular machines</subject><subject>Mutation</subject><subject>Pathogenesis</subject><subject>Phosphorylation</subject><subject>Steady state</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1OwzAQhC0EouXnzglZ4sKBFttxnOQIFQUkKhA_ErfITjatS2IXO0Hqa_EgPBMJbTkgcfJK_mZ2tIPQESVDShg9l5kfzjNdDVlGKI2iLdSnIU8GiSCv25s5TEQP7Xk_JyQIEsF2US8QgkSM8z4yDzPrFzPrlqWstTX4EabNepxANpNG-wrbAn99Mnxrapg6bXBhHa5ngC-1ybWZdv9jXcpKd_oPkCXkWC3xRLo3-4GfalkDntgcygO0U8jSw-H63Ucv46vn0c3g7v76dnRxN5CB4PUgUTJqo8aCAxWhlCoMGBEsozHLI6La5FwUEGeFIGFLCqVAACiVEB5HlIfBPjpd-S6cfW_A12mlfQZlKQ3YxqcsEjSJQ8GDFj35g85t40ybrqMSJgIadhRZUZmz3jso0oXTlXTLlJK06yJtu0i7LtJ1F63keG3cqAryX8Hm-C1wtgJ-pJul__p9Aw4dlUU</recordid><startdate>20230123</startdate><enddate>20230123</enddate><creator>Hong, Xiaokun</creator><creator>Song, Kaiyuan</creator><creator>Rahman, Mueed Ur</creator><creator>Wei, Ting</creator><creator>Zhang, Yan</creator><creator>Da, Lin-Tai</creator><creator>Chen, Hai-Feng</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7496-4182</orcidid><orcidid>https://orcid.org/0000-0002-1589-5754</orcidid><orcidid>https://orcid.org/0000-0002-4215-3684</orcidid></search><sort><creationdate>20230123</creationdate><title>Phosphorylation Regulation Mechanism of β2 Integrin for the Binding of Filamin Revealed by Markov State Model</title><author>Hong, Xiaokun ; Song, Kaiyuan ; Rahman, Mueed Ur ; Wei, Ting ; Zhang, Yan ; Da, Lin-Tai ; Chen, Hai-Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-9ba7396864e165aab532062c182d70b24446fe8cf605a736bbe6eebb904871453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Binding</topic><topic>CD18 Antigens - chemistry</topic><topic>CD18 Antigens - genetics</topic><topic>CD18 Antigens - metabolism</topic><topic>Computational Biochemistry</topic><topic>Filamins - chemistry</topic><topic>Filamins - metabolism</topic><topic>Free energy</topic><topic>Hydrogen bonds</topic><topic>Hydrophobicity</topic><topic>Kinases</topic><topic>Leukocytes</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular machines</topic><topic>Mutation</topic><topic>Pathogenesis</topic><topic>Phosphorylation</topic><topic>Steady state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Xiaokun</creatorcontrib><creatorcontrib>Song, Kaiyuan</creatorcontrib><creatorcontrib>Rahman, Mueed Ur</creatorcontrib><creatorcontrib>Wei, Ting</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Da, Lin-Tai</creatorcontrib><creatorcontrib>Chen, Hai-Feng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Xiaokun</au><au>Song, Kaiyuan</au><au>Rahman, Mueed Ur</au><au>Wei, Ting</au><au>Zhang, Yan</au><au>Da, Lin-Tai</au><au>Chen, Hai-Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphorylation Regulation Mechanism of β2 Integrin for the Binding of Filamin Revealed by Markov State Model</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2023-01-23</date><risdate>2023</risdate><volume>63</volume><issue>2</issue><spage>605</spage><epage>618</epage><pages>605-618</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Leukocyte adhesion deficiency-1 (LAD-1) disorder is a severe immunodeficiency syndrome caused by deficiency or mutation of β2 integrin. The phosphorylation on threonine 758 of β2 integrin acts as a molecular switch inhibiting the binding of filamin. However, the switch mechanism of site-specific phosphorylation at the atom level is still poorly understood. To resolve the regulation mechanism, all-atom molecular dynamics simulation and Markov state model were used to study the dynamic regulation pathway of phosphorylation. Wild type system possessed lower binding free energy and fewer number of states than the phosphorylated system. Both systems underwent local disorder-to-order conformation conversion when achieving steady states. To reach steady states, wild type adopted less number of transition paths/shortest path according to the transition path theory than the phosphorylated system. The underlying phosphorylated regulation pathway was from P1 to P0 and then P4 state, and the main driving force should be hydrogen bond and hydrophobic interaction disturbing the secondary structure of phosphorylated states. These studies will shed light on the pathogenesis of LAD-1 disease and lay a foundation for drug development.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36607244</pmid><doi>10.1021/acs.jcim.2c01177</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7496-4182</orcidid><orcidid>https://orcid.org/0000-0002-1589-5754</orcidid><orcidid>https://orcid.org/0000-0002-4215-3684</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2023-01, Vol.63 (2), p.605-618 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_proquest_miscellaneous_2761985643 |
source | MEDLINE; ACS Publications |
subjects | Binding CD18 Antigens - chemistry CD18 Antigens - genetics CD18 Antigens - metabolism Computational Biochemistry Filamins - chemistry Filamins - metabolism Free energy Hydrogen bonds Hydrophobicity Kinases Leukocytes Molecular dynamics Molecular Dynamics Simulation Molecular machines Mutation Pathogenesis Phosphorylation Steady state |
title | Phosphorylation Regulation Mechanism of β2 Integrin for the Binding of Filamin Revealed by Markov State Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A18%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphorylation%20Regulation%20Mechanism%20of%20%CE%B22%20Integrin%20for%20the%20Binding%20of%20Filamin%20Revealed%20by%20Markov%20State%20Model&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Hong,%20Xiaokun&rft.date=2023-01-23&rft.volume=63&rft.issue=2&rft.spage=605&rft.epage=618&rft.pages=605-618&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.2c01177&rft_dat=%3Cproquest_cross%3E2761985643%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2769263153&rft_id=info:pmid/36607244&rfr_iscdi=true |