Phosphorylation Regulation Mechanism of β2 Integrin for the Binding of Filamin Revealed by Markov State Model

Leukocyte adhesion deficiency-1 (LAD-1) disorder is a severe immunodeficiency syndrome caused by deficiency or mutation of β2 integrin. The phosphorylation on threonine 758 of β2 integrin acts as a molecular switch inhibiting the binding of filamin. However, the switch mechanism of site-specific pho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2023-01, Vol.63 (2), p.605-618
Hauptverfasser: Hong, Xiaokun, Song, Kaiyuan, Rahman, Mueed Ur, Wei, Ting, Zhang, Yan, Da, Lin-Tai, Chen, Hai-Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 618
container_issue 2
container_start_page 605
container_title Journal of chemical information and modeling
container_volume 63
creator Hong, Xiaokun
Song, Kaiyuan
Rahman, Mueed Ur
Wei, Ting
Zhang, Yan
Da, Lin-Tai
Chen, Hai-Feng
description Leukocyte adhesion deficiency-1 (LAD-1) disorder is a severe immunodeficiency syndrome caused by deficiency or mutation of β2 integrin. The phosphorylation on threonine 758 of β2 integrin acts as a molecular switch inhibiting the binding of filamin. However, the switch mechanism of site-specific phosphorylation at the atom level is still poorly understood. To resolve the regulation mechanism, all-atom molecular dynamics simulation and Markov state model were used to study the dynamic regulation pathway of phosphorylation. Wild type system possessed lower binding free energy and fewer number of states than the phosphorylated system. Both systems underwent local disorder-to-order conformation conversion when achieving steady states. To reach steady states, wild type adopted less number of transition paths/shortest path according to the transition path theory than the phosphorylated system. The underlying phosphorylated regulation pathway was from P1 to P0 and then P4 state, and the main driving force should be hydrogen bond and hydrophobic interaction disturbing the secondary structure of phosphorylated states. These studies will shed light on the pathogenesis of LAD-1 disease and lay a foundation for drug development.
doi_str_mv 10.1021/acs.jcim.2c01177
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2761985643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2761985643</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-9ba7396864e165aab532062c182d70b24446fe8cf605a736bbe6eebb904871453</originalsourceid><addsrcrecordid>eNp1kc1OwzAQhC0EouXnzglZ4sKBFttxnOQIFQUkKhA_ErfITjatS2IXO0Hqa_EgPBMJbTkgcfJK_mZ2tIPQESVDShg9l5kfzjNdDVlGKI2iLdSnIU8GiSCv25s5TEQP7Xk_JyQIEsF2US8QgkSM8z4yDzPrFzPrlqWstTX4EabNepxANpNG-wrbAn99Mnxrapg6bXBhHa5ngC-1ybWZdv9jXcpKd_oPkCXkWC3xRLo3-4GfalkDntgcygO0U8jSw-H63Ucv46vn0c3g7v76dnRxN5CB4PUgUTJqo8aCAxWhlCoMGBEsozHLI6La5FwUEGeFIGFLCqVAACiVEB5HlIfBPjpd-S6cfW_A12mlfQZlKQ3YxqcsEjSJQ8GDFj35g85t40ybrqMSJgIadhRZUZmz3jso0oXTlXTLlJK06yJtu0i7LtJ1F63keG3cqAryX8Hm-C1wtgJ-pJul__p9Aw4dlUU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769263153</pqid></control><display><type>article</type><title>Phosphorylation Regulation Mechanism of β2 Integrin for the Binding of Filamin Revealed by Markov State Model</title><source>MEDLINE</source><source>ACS Publications</source><creator>Hong, Xiaokun ; Song, Kaiyuan ; Rahman, Mueed Ur ; Wei, Ting ; Zhang, Yan ; Da, Lin-Tai ; Chen, Hai-Feng</creator><creatorcontrib>Hong, Xiaokun ; Song, Kaiyuan ; Rahman, Mueed Ur ; Wei, Ting ; Zhang, Yan ; Da, Lin-Tai ; Chen, Hai-Feng</creatorcontrib><description>Leukocyte adhesion deficiency-1 (LAD-1) disorder is a severe immunodeficiency syndrome caused by deficiency or mutation of β2 integrin. The phosphorylation on threonine 758 of β2 integrin acts as a molecular switch inhibiting the binding of filamin. However, the switch mechanism of site-specific phosphorylation at the atom level is still poorly understood. To resolve the regulation mechanism, all-atom molecular dynamics simulation and Markov state model were used to study the dynamic regulation pathway of phosphorylation. Wild type system possessed lower binding free energy and fewer number of states than the phosphorylated system. Both systems underwent local disorder-to-order conformation conversion when achieving steady states. To reach steady states, wild type adopted less number of transition paths/shortest path according to the transition path theory than the phosphorylated system. The underlying phosphorylated regulation pathway was from P1 to P0 and then P4 state, and the main driving force should be hydrogen bond and hydrophobic interaction disturbing the secondary structure of phosphorylated states. These studies will shed light on the pathogenesis of LAD-1 disease and lay a foundation for drug development.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.2c01177</identifier><identifier>PMID: 36607244</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Binding ; CD18 Antigens - chemistry ; CD18 Antigens - genetics ; CD18 Antigens - metabolism ; Computational Biochemistry ; Filamins - chemistry ; Filamins - metabolism ; Free energy ; Hydrogen bonds ; Hydrophobicity ; Kinases ; Leukocytes ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular machines ; Mutation ; Pathogenesis ; Phosphorylation ; Steady state</subject><ispartof>Journal of chemical information and modeling, 2023-01, Vol.63 (2), p.605-618</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Jan 23, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-9ba7396864e165aab532062c182d70b24446fe8cf605a736bbe6eebb904871453</citedby><cites>FETCH-LOGICAL-a364t-9ba7396864e165aab532062c182d70b24446fe8cf605a736bbe6eebb904871453</cites><orcidid>0000-0002-7496-4182 ; 0000-0002-1589-5754 ; 0000-0002-4215-3684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.2c01177$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.2c01177$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36607244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hong, Xiaokun</creatorcontrib><creatorcontrib>Song, Kaiyuan</creatorcontrib><creatorcontrib>Rahman, Mueed Ur</creatorcontrib><creatorcontrib>Wei, Ting</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Da, Lin-Tai</creatorcontrib><creatorcontrib>Chen, Hai-Feng</creatorcontrib><title>Phosphorylation Regulation Mechanism of β2 Integrin for the Binding of Filamin Revealed by Markov State Model</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Leukocyte adhesion deficiency-1 (LAD-1) disorder is a severe immunodeficiency syndrome caused by deficiency or mutation of β2 integrin. The phosphorylation on threonine 758 of β2 integrin acts as a molecular switch inhibiting the binding of filamin. However, the switch mechanism of site-specific phosphorylation at the atom level is still poorly understood. To resolve the regulation mechanism, all-atom molecular dynamics simulation and Markov state model were used to study the dynamic regulation pathway of phosphorylation. Wild type system possessed lower binding free energy and fewer number of states than the phosphorylated system. Both systems underwent local disorder-to-order conformation conversion when achieving steady states. To reach steady states, wild type adopted less number of transition paths/shortest path according to the transition path theory than the phosphorylated system. The underlying phosphorylated regulation pathway was from P1 to P0 and then P4 state, and the main driving force should be hydrogen bond and hydrophobic interaction disturbing the secondary structure of phosphorylated states. These studies will shed light on the pathogenesis of LAD-1 disease and lay a foundation for drug development.</description><subject>Binding</subject><subject>CD18 Antigens - chemistry</subject><subject>CD18 Antigens - genetics</subject><subject>CD18 Antigens - metabolism</subject><subject>Computational Biochemistry</subject><subject>Filamins - chemistry</subject><subject>Filamins - metabolism</subject><subject>Free energy</subject><subject>Hydrogen bonds</subject><subject>Hydrophobicity</subject><subject>Kinases</subject><subject>Leukocytes</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular machines</subject><subject>Mutation</subject><subject>Pathogenesis</subject><subject>Phosphorylation</subject><subject>Steady state</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1OwzAQhC0EouXnzglZ4sKBFttxnOQIFQUkKhA_ErfITjatS2IXO0Hqa_EgPBMJbTkgcfJK_mZ2tIPQESVDShg9l5kfzjNdDVlGKI2iLdSnIU8GiSCv25s5TEQP7Xk_JyQIEsF2US8QgkSM8z4yDzPrFzPrlqWstTX4EabNepxANpNG-wrbAn99Mnxrapg6bXBhHa5ngC-1ybWZdv9jXcpKd_oPkCXkWC3xRLo3-4GfalkDntgcygO0U8jSw-H63Ucv46vn0c3g7v76dnRxN5CB4PUgUTJqo8aCAxWhlCoMGBEsozHLI6La5FwUEGeFIGFLCqVAACiVEB5HlIfBPjpd-S6cfW_A12mlfQZlKQ3YxqcsEjSJQ8GDFj35g85t40ybrqMSJgIadhRZUZmz3jso0oXTlXTLlJK06yJtu0i7LtJ1F63keG3cqAryX8Hm-C1wtgJ-pJul__p9Aw4dlUU</recordid><startdate>20230123</startdate><enddate>20230123</enddate><creator>Hong, Xiaokun</creator><creator>Song, Kaiyuan</creator><creator>Rahman, Mueed Ur</creator><creator>Wei, Ting</creator><creator>Zhang, Yan</creator><creator>Da, Lin-Tai</creator><creator>Chen, Hai-Feng</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7496-4182</orcidid><orcidid>https://orcid.org/0000-0002-1589-5754</orcidid><orcidid>https://orcid.org/0000-0002-4215-3684</orcidid></search><sort><creationdate>20230123</creationdate><title>Phosphorylation Regulation Mechanism of β2 Integrin for the Binding of Filamin Revealed by Markov State Model</title><author>Hong, Xiaokun ; Song, Kaiyuan ; Rahman, Mueed Ur ; Wei, Ting ; Zhang, Yan ; Da, Lin-Tai ; Chen, Hai-Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-9ba7396864e165aab532062c182d70b24446fe8cf605a736bbe6eebb904871453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Binding</topic><topic>CD18 Antigens - chemistry</topic><topic>CD18 Antigens - genetics</topic><topic>CD18 Antigens - metabolism</topic><topic>Computational Biochemistry</topic><topic>Filamins - chemistry</topic><topic>Filamins - metabolism</topic><topic>Free energy</topic><topic>Hydrogen bonds</topic><topic>Hydrophobicity</topic><topic>Kinases</topic><topic>Leukocytes</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular machines</topic><topic>Mutation</topic><topic>Pathogenesis</topic><topic>Phosphorylation</topic><topic>Steady state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Xiaokun</creatorcontrib><creatorcontrib>Song, Kaiyuan</creatorcontrib><creatorcontrib>Rahman, Mueed Ur</creatorcontrib><creatorcontrib>Wei, Ting</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Da, Lin-Tai</creatorcontrib><creatorcontrib>Chen, Hai-Feng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Xiaokun</au><au>Song, Kaiyuan</au><au>Rahman, Mueed Ur</au><au>Wei, Ting</au><au>Zhang, Yan</au><au>Da, Lin-Tai</au><au>Chen, Hai-Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphorylation Regulation Mechanism of β2 Integrin for the Binding of Filamin Revealed by Markov State Model</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2023-01-23</date><risdate>2023</risdate><volume>63</volume><issue>2</issue><spage>605</spage><epage>618</epage><pages>605-618</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Leukocyte adhesion deficiency-1 (LAD-1) disorder is a severe immunodeficiency syndrome caused by deficiency or mutation of β2 integrin. The phosphorylation on threonine 758 of β2 integrin acts as a molecular switch inhibiting the binding of filamin. However, the switch mechanism of site-specific phosphorylation at the atom level is still poorly understood. To resolve the regulation mechanism, all-atom molecular dynamics simulation and Markov state model were used to study the dynamic regulation pathway of phosphorylation. Wild type system possessed lower binding free energy and fewer number of states than the phosphorylated system. Both systems underwent local disorder-to-order conformation conversion when achieving steady states. To reach steady states, wild type adopted less number of transition paths/shortest path according to the transition path theory than the phosphorylated system. The underlying phosphorylated regulation pathway was from P1 to P0 and then P4 state, and the main driving force should be hydrogen bond and hydrophobic interaction disturbing the secondary structure of phosphorylated states. These studies will shed light on the pathogenesis of LAD-1 disease and lay a foundation for drug development.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36607244</pmid><doi>10.1021/acs.jcim.2c01177</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7496-4182</orcidid><orcidid>https://orcid.org/0000-0002-1589-5754</orcidid><orcidid>https://orcid.org/0000-0002-4215-3684</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2023-01, Vol.63 (2), p.605-618
issn 1549-9596
1549-960X
language eng
recordid cdi_proquest_miscellaneous_2761985643
source MEDLINE; ACS Publications
subjects Binding
CD18 Antigens - chemistry
CD18 Antigens - genetics
CD18 Antigens - metabolism
Computational Biochemistry
Filamins - chemistry
Filamins - metabolism
Free energy
Hydrogen bonds
Hydrophobicity
Kinases
Leukocytes
Molecular dynamics
Molecular Dynamics Simulation
Molecular machines
Mutation
Pathogenesis
Phosphorylation
Steady state
title Phosphorylation Regulation Mechanism of β2 Integrin for the Binding of Filamin Revealed by Markov State Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A18%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphorylation%20Regulation%20Mechanism%20of%20%CE%B22%20Integrin%20for%20the%20Binding%20of%20Filamin%20Revealed%20by%20Markov%20State%20Model&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Hong,%20Xiaokun&rft.date=2023-01-23&rft.volume=63&rft.issue=2&rft.spage=605&rft.epage=618&rft.pages=605-618&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.2c01177&rft_dat=%3Cproquest_cross%3E2761985643%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2769263153&rft_id=info:pmid/36607244&rfr_iscdi=true