Risk Analysis for Quality Control Part 1: The Impact of Transition Assumptions in the Parvin Model

Setting quality control (QC) limits involves balancing the risk of false-positive results and false-negative results. Recent approaches to QC have focused on the assessment of false-negative results. The Parvin model is the most-used model for risk analysis. The Parvin model assumes that the system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of applied laboratory medicine 2023-01, Vol.8 (1), p.14-22
Hauptverfasser: Schmidt, Robert L, Moore, Ryleigh A, Walker, Brandon S, Rudolf, Joseph W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue 1
container_start_page 14
container_title The journal of applied laboratory medicine
container_volume 8
creator Schmidt, Robert L
Moore, Ryleigh A
Walker, Brandon S
Rudolf, Joseph W
description Setting quality control (QC) limits involves balancing the risk of false-positive results and false-negative results. Recent approaches to QC have focused on the assessment of false-negative results. The Parvin model is the most-used model for risk analysis. The Parvin model assumes that the system makes a transition from an in-control to an out-of-control (OOC) state but makes no further transitions after moving to the OOC state. The implications of this assumption are unclear. We used simulation experiments to compare the performance of QC systems based on no OOC transitions allowed (NOOCTA) vs systems where OOC transitions were allowed (OOCTA). The NOOCTA assumption leads to paradoxical tradeoff curves between false-positive results and false-negative results. Predictions of a false-negative result based on NOOCTA were about 10 times lower than models based on OOCTA. The most common models for QC risk analysis underestimate false-negative results. There is a need to develop better risk-based methods for QC analysis.
doi_str_mv 10.1093/jalm/jfac117
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2761982751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2761982751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-6572adff538ca7519b67f714f49f7d249cc121299570ca75ddb0398725813c343</originalsourceid><addsrcrecordid>eNo9kDtPwzAURi0EolXpxow8MhDqR2LHbFXFo1IRD5U5chxbuCRxsB2k_nsStTDdM5z7DQeAS4xuMRJ0sZN1s9gZqTDmJ2BKUp4lnKT4dOCMs0SkGZuAeQg7hBDOCWMUnYMJZQyjlNApKN9t-ILLVtb7YAM0zsO3XtY27uHKtdG7Gr5KHyG-g9tPDddNJ1WEzsCtl22w0boWLkPom27EAG0L4-ANPz8DPrtK1xfgzMg66PnxzsDHw_129ZRsXh7Xq-UmUZSImLCME1kZk9FcSZ5hUTJuOE5NKgyvSCqUwgQTITKORqGqSkRFzkmWY6poSmfg-rDbeffd6xCLxgal61q22vWhIJxhkZNhelBvDqryLgSvTdF520i_LzAqxrDFGLY4hh30q-NyXza6-pf_MtJfV45z7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761982751</pqid></control><display><type>article</type><title>Risk Analysis for Quality Control Part 1: The Impact of Transition Assumptions in the Parvin Model</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Schmidt, Robert L ; Moore, Ryleigh A ; Walker, Brandon S ; Rudolf, Joseph W</creator><creatorcontrib>Schmidt, Robert L ; Moore, Ryleigh A ; Walker, Brandon S ; Rudolf, Joseph W</creatorcontrib><description>Setting quality control (QC) limits involves balancing the risk of false-positive results and false-negative results. Recent approaches to QC have focused on the assessment of false-negative results. The Parvin model is the most-used model for risk analysis. The Parvin model assumes that the system makes a transition from an in-control to an out-of-control (OOC) state but makes no further transitions after moving to the OOC state. The implications of this assumption are unclear. We used simulation experiments to compare the performance of QC systems based on no OOC transitions allowed (NOOCTA) vs systems where OOC transitions were allowed (OOCTA). The NOOCTA assumption leads to paradoxical tradeoff curves between false-positive results and false-negative results. Predictions of a false-negative result based on NOOCTA were about 10 times lower than models based on OOCTA. The most common models for QC risk analysis underestimate false-negative results. There is a need to develop better risk-based methods for QC analysis.</description><identifier>ISSN: 2576-9456</identifier><identifier>ISSN: 2475-7241</identifier><identifier>EISSN: 2475-7241</identifier><identifier>DOI: 10.1093/jalm/jfac117</identifier><identifier>PMID: 36610423</identifier><language>eng</language><publisher>England</publisher><subject>Humans ; Quality Control ; Risk Assessment</subject><ispartof>The journal of applied laboratory medicine, 2023-01, Vol.8 (1), p.14-22</ispartof><rights>American Association for Clinical Chemistry 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-6572adff538ca7519b67f714f49f7d249cc121299570ca75ddb0398725813c343</citedby><cites>FETCH-LOGICAL-c329t-6572adff538ca7519b67f714f49f7d249cc121299570ca75ddb0398725813c343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36610423$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmidt, Robert L</creatorcontrib><creatorcontrib>Moore, Ryleigh A</creatorcontrib><creatorcontrib>Walker, Brandon S</creatorcontrib><creatorcontrib>Rudolf, Joseph W</creatorcontrib><title>Risk Analysis for Quality Control Part 1: The Impact of Transition Assumptions in the Parvin Model</title><title>The journal of applied laboratory medicine</title><addtitle>J Appl Lab Med</addtitle><description>Setting quality control (QC) limits involves balancing the risk of false-positive results and false-negative results. Recent approaches to QC have focused on the assessment of false-negative results. The Parvin model is the most-used model for risk analysis. The Parvin model assumes that the system makes a transition from an in-control to an out-of-control (OOC) state but makes no further transitions after moving to the OOC state. The implications of this assumption are unclear. We used simulation experiments to compare the performance of QC systems based on no OOC transitions allowed (NOOCTA) vs systems where OOC transitions were allowed (OOCTA). The NOOCTA assumption leads to paradoxical tradeoff curves between false-positive results and false-negative results. Predictions of a false-negative result based on NOOCTA were about 10 times lower than models based on OOCTA. The most common models for QC risk analysis underestimate false-negative results. There is a need to develop better risk-based methods for QC analysis.</description><subject>Humans</subject><subject>Quality Control</subject><subject>Risk Assessment</subject><issn>2576-9456</issn><issn>2475-7241</issn><issn>2475-7241</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kDtPwzAURi0EolXpxow8MhDqR2LHbFXFo1IRD5U5chxbuCRxsB2k_nsStTDdM5z7DQeAS4xuMRJ0sZN1s9gZqTDmJ2BKUp4lnKT4dOCMs0SkGZuAeQg7hBDOCWMUnYMJZQyjlNApKN9t-ILLVtb7YAM0zsO3XtY27uHKtdG7Gr5KHyG-g9tPDddNJ1WEzsCtl22w0boWLkPom27EAG0L4-ANPz8DPrtK1xfgzMg66PnxzsDHw_129ZRsXh7Xq-UmUZSImLCME1kZk9FcSZ5hUTJuOE5NKgyvSCqUwgQTITKORqGqSkRFzkmWY6poSmfg-rDbeffd6xCLxgal61q22vWhIJxhkZNhelBvDqryLgSvTdF520i_LzAqxrDFGLY4hh30q-NyXza6-pf_MtJfV45z7Q</recordid><startdate>20230104</startdate><enddate>20230104</enddate><creator>Schmidt, Robert L</creator><creator>Moore, Ryleigh A</creator><creator>Walker, Brandon S</creator><creator>Rudolf, Joseph W</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230104</creationdate><title>Risk Analysis for Quality Control Part 1: The Impact of Transition Assumptions in the Parvin Model</title><author>Schmidt, Robert L ; Moore, Ryleigh A ; Walker, Brandon S ; Rudolf, Joseph W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-6572adff538ca7519b67f714f49f7d249cc121299570ca75ddb0398725813c343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Humans</topic><topic>Quality Control</topic><topic>Risk Assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidt, Robert L</creatorcontrib><creatorcontrib>Moore, Ryleigh A</creatorcontrib><creatorcontrib>Walker, Brandon S</creatorcontrib><creatorcontrib>Rudolf, Joseph W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of applied laboratory medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt, Robert L</au><au>Moore, Ryleigh A</au><au>Walker, Brandon S</au><au>Rudolf, Joseph W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk Analysis for Quality Control Part 1: The Impact of Transition Assumptions in the Parvin Model</atitle><jtitle>The journal of applied laboratory medicine</jtitle><addtitle>J Appl Lab Med</addtitle><date>2023-01-04</date><risdate>2023</risdate><volume>8</volume><issue>1</issue><spage>14</spage><epage>22</epage><pages>14-22</pages><issn>2576-9456</issn><issn>2475-7241</issn><eissn>2475-7241</eissn><abstract>Setting quality control (QC) limits involves balancing the risk of false-positive results and false-negative results. Recent approaches to QC have focused on the assessment of false-negative results. The Parvin model is the most-used model for risk analysis. The Parvin model assumes that the system makes a transition from an in-control to an out-of-control (OOC) state but makes no further transitions after moving to the OOC state. The implications of this assumption are unclear. We used simulation experiments to compare the performance of QC systems based on no OOC transitions allowed (NOOCTA) vs systems where OOC transitions were allowed (OOCTA). The NOOCTA assumption leads to paradoxical tradeoff curves between false-positive results and false-negative results. Predictions of a false-negative result based on NOOCTA were about 10 times lower than models based on OOCTA. The most common models for QC risk analysis underestimate false-negative results. There is a need to develop better risk-based methods for QC analysis.</abstract><cop>England</cop><pmid>36610423</pmid><doi>10.1093/jalm/jfac117</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2576-9456
ispartof The journal of applied laboratory medicine, 2023-01, Vol.8 (1), p.14-22
issn 2576-9456
2475-7241
2475-7241
language eng
recordid cdi_proquest_miscellaneous_2761982751
source MEDLINE; Oxford University Press Journals All Titles (1996-Current)
subjects Humans
Quality Control
Risk Assessment
title Risk Analysis for Quality Control Part 1: The Impact of Transition Assumptions in the Parvin Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A33%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk%20Analysis%20for%20Quality%20Control%20Part%201:%20The%20Impact%20of%20Transition%20Assumptions%20in%20the%20Parvin%20Model&rft.jtitle=The%20journal%20of%20applied%20laboratory%20medicine&rft.au=Schmidt,%20Robert%20L&rft.date=2023-01-04&rft.volume=8&rft.issue=1&rft.spage=14&rft.epage=22&rft.pages=14-22&rft.issn=2576-9456&rft.eissn=2475-7241&rft_id=info:doi/10.1093/jalm/jfac117&rft_dat=%3Cproquest_cross%3E2761982751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761982751&rft_id=info:pmid/36610423&rfr_iscdi=true