Collaboration of two-star nanomaterials: The applications of nanocellulose-based metal organic frameworks composites

Nanocellulose, as the star nanomaterial in carbohydrate polymers, has excellent mechanical properties, biodegradability, and easy chemical modification. However, further practical applications of nanocellulose are limited by their inadequate functionalization. Metal-organic frameworks (MOFs), as the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2023-02, Vol.302, p.120359-120359, Article 120359
Hauptverfasser: Mai, Tian, Li, Dan-Dan, Chen, Lei, Ma, Ming-Guo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanocellulose, as the star nanomaterial in carbohydrate polymers, has excellent mechanical properties, biodegradability, and easy chemical modification. However, further practical applications of nanocellulose are limited by their inadequate functionalization. Metal-organic frameworks (MOFs), as the star nanomaterial in functional polymers, have a large surface area, high porosity, and adjustable structure. The collaboration of nanocellulose and MOFs is a desirable strategy to make composites especially interesting for multifunctional and multi-field applications. What sparks will be produced by the collaboration of two-star nanomaterials? In this review article, we highlight an up-to-date overview of nanocellulose-based MOFs composites. The sewage treatment, gas separation, energy storage, and biomedical applications are mainly summarized. Finally, the challenges and research trends of nanocellulose-based MOFs composites are prospected. We hope this review may provide a valuable reference for the development and applications of carbohydrate polymer composites soon. [Display omitted]
ISSN:0144-8617
1879-1344
DOI:10.1016/j.carbpol.2022.120359