In silico simulations reveal that replicators with limited dispersal evolve towards higher efficiency and fidelity
The emergence of functional replicases, acting quickly and with high accuracy, was crucial to the origin of life. Although where the first RNA molecules came from is still unknown, it is nevertheless assumed that catalytic RNA enzymes (ribozymes) with replicase function emerged at some early stage o...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2002-11, Vol.420 (6913), p.340-343 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 343 |
---|---|
container_issue | 6913 |
container_start_page | 340 |
container_title | Nature (London) |
container_volume | 420 |
creator | Szathmáry, Eörs Szabó, Péter Scheuring, István Czárán, Tamás |
description | The emergence of functional replicases, acting quickly and with high accuracy, was crucial to the origin of life. Although where the first RNA molecules came from is still unknown, it is nevertheless assumed that catalytic RNA enzymes (ribozymes) with replicase function emerged at some early stage of evolution. The fidelity of copying is especially important because the mutation load limits the length of replicating templates that can be maintained by natural selection. An increase in template length is disadvantageous for a fixed digit copying fidelity, however, longer molecules are expected to be better replicases. An iteration for longer molecules with better replicase function has been suggested and analysed mathematically. Here we show that more efficient replicases can spread, provided they are adsorbed to a prebiotic mineral surface. A cellular automaton simulation reveals that copying fidelity, replicase speed and template efficiency all increase with evolution, despite the presence of molecular parasites, essentially because of reciprocal atruism ('within-species mutualism') on the surface, thus making a gradual improvement of replicase function more plausible. |
doi_str_mv | 10.1038/nature01187 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_27619630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A187569306</galeid><sourcerecordid>A187569306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641t-9db4034f3ed139a2e31cebe13a8588da3629196a042e067b6b564bc3c301728c3</originalsourceid><addsrcrecordid>eNqF0s2LEzEUAPBBFLeunrxLXFAQnTWZZDKZYyl-FBYFXfE4ZDJv2iyZpJtkuva_N0uLbaUiOSS8_PJC8l6WPSf4kmAq3lsZRw-YEFE9yCaEVTxnXFQPswnGhcixoPwsexLCDca4JBV7nJ2RgrGKsXKS-blFQRutXJqG0cionQ3IwxqkQXEpY1qv0r6Mzgd0p-MSGT3oCB3qdFiBD8nB2pk1oOjupO8CWurFEjyCvtdKg1UbJG2Het2B0XHzNHvUSxPg2W4-z358_HA9-5xfff00n02vcsUZiXndtQxT1lPoCK1lAZQoaIFQKUohOkl5UZOaS8wKwLxqeVty1iqqKCZVIRQ9z15v8668ux0hxGbQQYEx0oIbQ1NUPJ2n-L-QiLKsCOUJXvwFb9zobXpEU2DGRM1rkVC-RQtpoNG2d9FLtQALXhpnodcpPE3FKnlN8UHSI69W-rY5RJcnUBodDKl2p7K-OTqQTIRfcSHHEJr592_H9u2_7fT65-zLSa28C8FD36y8HqTfNAQ39w3ZHDRk0i92Xza2A3R7u-vABF7tgAxKmt5Lq3TYO4YLVuD7Ir3bupC27AL8_u9P3_tyy7fBP_kOzW_lmgGS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204489698</pqid></control><display><type>article</type><title>In silico simulations reveal that replicators with limited dispersal evolve towards higher efficiency and fidelity</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Szathmáry, Eörs ; Szabó, Péter ; Scheuring, István ; Czárán, Tamás</creator><creatorcontrib>Szathmáry, Eörs ; Szabó, Péter ; Scheuring, István ; Czárán, Tamás</creatorcontrib><description>The emergence of functional replicases, acting quickly and with high accuracy, was crucial to the origin of life. Although where the first RNA molecules came from is still unknown, it is nevertheless assumed that catalytic RNA enzymes (ribozymes) with replicase function emerged at some early stage of evolution. The fidelity of copying is especially important because the mutation load limits the length of replicating templates that can be maintained by natural selection. An increase in template length is disadvantageous for a fixed digit copying fidelity, however, longer molecules are expected to be better replicases. An iteration for longer molecules with better replicase function has been suggested and analysed mathematically. Here we show that more efficient replicases can spread, provided they are adsorbed to a prebiotic mineral surface. A cellular automaton simulation reveals that copying fidelity, replicase speed and template efficiency all increase with evolution, despite the presence of molecular parasites, essentially because of reciprocal atruism ('within-species mutualism') on the surface, thus making a gradual improvement of replicase function more plausible.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature01187</identifier><identifier>PMID: 12447445</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Adsorption ; Binding Sites ; Biological Evolution ; Biologie moleculaire et cellulaire ; Biology ; Computer Simulation ; Diffusion ; DNA-Directed DNA Polymerase - metabolism ; Enzymes ; Evolution ; Evolution biologique ; Evolution, Molecular ; Genetique des eucaryotes. Evolution biologique et moleculaire ; Génétique moléculaire ; Humanities and Social Sciences ; Kinetics ; letter ; Models, Biological ; multidisciplinary ; Mutagenesis - genetics ; Mutation ; Mutualism ; Origin of Life ; Parasites ; Ribonucleic acid ; RNA ; RNA Replicase - metabolism ; RNA, Catalytic - metabolism ; Réplication ; Science ; Science (multidisciplinary) ; Sciences biologiques et medicales ; Sciences biologiques fondamentales et appliquees. Psychologie ; Selection, Genetic ; Templates, Genetic</subject><ispartof>Nature (London), 2002-11, Vol.420 (6913), p.340-343</ispartof><rights>Macmillan Magazines Ltd. 2002</rights><rights>2003 INIST-CNRS</rights><rights>COPYRIGHT 2002 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Nov 21, 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c641t-9db4034f3ed139a2e31cebe13a8588da3629196a042e067b6b564bc3c301728c3</citedby><cites>FETCH-LOGICAL-c641t-9db4034f3ed139a2e31cebe13a8588da3629196a042e067b6b564bc3c301728c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature01187$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature01187$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2725,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14024200$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12447445$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Szathmáry, Eörs</creatorcontrib><creatorcontrib>Szabó, Péter</creatorcontrib><creatorcontrib>Scheuring, István</creatorcontrib><creatorcontrib>Czárán, Tamás</creatorcontrib><title>In silico simulations reveal that replicators with limited dispersal evolve towards higher efficiency and fidelity</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The emergence of functional replicases, acting quickly and with high accuracy, was crucial to the origin of life. Although where the first RNA molecules came from is still unknown, it is nevertheless assumed that catalytic RNA enzymes (ribozymes) with replicase function emerged at some early stage of evolution. The fidelity of copying is especially important because the mutation load limits the length of replicating templates that can be maintained by natural selection. An increase in template length is disadvantageous for a fixed digit copying fidelity, however, longer molecules are expected to be better replicases. An iteration for longer molecules with better replicase function has been suggested and analysed mathematically. Here we show that more efficient replicases can spread, provided they are adsorbed to a prebiotic mineral surface. A cellular automaton simulation reveals that copying fidelity, replicase speed and template efficiency all increase with evolution, despite the presence of molecular parasites, essentially because of reciprocal atruism ('within-species mutualism') on the surface, thus making a gradual improvement of replicase function more plausible.</description><subject>Adsorption</subject><subject>Binding Sites</subject><subject>Biological Evolution</subject><subject>Biologie moleculaire et cellulaire</subject><subject>Biology</subject><subject>Computer Simulation</subject><subject>Diffusion</subject><subject>DNA-Directed DNA Polymerase - metabolism</subject><subject>Enzymes</subject><subject>Evolution</subject><subject>Evolution biologique</subject><subject>Evolution, Molecular</subject><subject>Genetique des eucaryotes. Evolution biologique et moleculaire</subject><subject>Génétique moléculaire</subject><subject>Humanities and Social Sciences</subject><subject>Kinetics</subject><subject>letter</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Mutagenesis - genetics</subject><subject>Mutation</subject><subject>Mutualism</subject><subject>Origin of Life</subject><subject>Parasites</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Replicase - metabolism</subject><subject>RNA, Catalytic - metabolism</subject><subject>Réplication</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sciences biologiques et medicales</subject><subject>Sciences biologiques fondamentales et appliquees. Psychologie</subject><subject>Selection, Genetic</subject><subject>Templates, Genetic</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0s2LEzEUAPBBFLeunrxLXFAQnTWZZDKZYyl-FBYFXfE4ZDJv2iyZpJtkuva_N0uLbaUiOSS8_PJC8l6WPSf4kmAq3lsZRw-YEFE9yCaEVTxnXFQPswnGhcixoPwsexLCDca4JBV7nJ2RgrGKsXKS-blFQRutXJqG0cionQ3IwxqkQXEpY1qv0r6Mzgd0p-MSGT3oCB3qdFiBD8nB2pk1oOjupO8CWurFEjyCvtdKg1UbJG2Het2B0XHzNHvUSxPg2W4-z358_HA9-5xfff00n02vcsUZiXndtQxT1lPoCK1lAZQoaIFQKUohOkl5UZOaS8wKwLxqeVty1iqqKCZVIRQ9z15v8668ux0hxGbQQYEx0oIbQ1NUPJ2n-L-QiLKsCOUJXvwFb9zobXpEU2DGRM1rkVC-RQtpoNG2d9FLtQALXhpnodcpPE3FKnlN8UHSI69W-rY5RJcnUBodDKl2p7K-OTqQTIRfcSHHEJr592_H9u2_7fT65-zLSa28C8FD36y8HqTfNAQ39w3ZHDRk0i92Xza2A3R7u-vABF7tgAxKmt5Lq3TYO4YLVuD7Ir3bupC27AL8_u9P3_tyy7fBP_kOzW_lmgGS</recordid><startdate>20021121</startdate><enddate>20021121</enddate><creator>Szathmáry, Eörs</creator><creator>Szabó, Péter</creator><creator>Scheuring, István</creator><creator>Czárán, Tamás</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20021121</creationdate><title>In silico simulations reveal that replicators with limited dispersal evolve towards higher efficiency and fidelity</title><author>Szathmáry, Eörs ; Szabó, Péter ; Scheuring, István ; Czárán, Tamás</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641t-9db4034f3ed139a2e31cebe13a8588da3629196a042e067b6b564bc3c301728c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Adsorption</topic><topic>Binding Sites</topic><topic>Biological Evolution</topic><topic>Biologie moleculaire et cellulaire</topic><topic>Biology</topic><topic>Computer Simulation</topic><topic>Diffusion</topic><topic>DNA-Directed DNA Polymerase - metabolism</topic><topic>Enzymes</topic><topic>Evolution</topic><topic>Evolution biologique</topic><topic>Evolution, Molecular</topic><topic>Genetique des eucaryotes. Evolution biologique et moleculaire</topic><topic>Génétique moléculaire</topic><topic>Humanities and Social Sciences</topic><topic>Kinetics</topic><topic>letter</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Mutagenesis - genetics</topic><topic>Mutation</topic><topic>Mutualism</topic><topic>Origin of Life</topic><topic>Parasites</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Replicase - metabolism</topic><topic>RNA, Catalytic - metabolism</topic><topic>Réplication</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sciences biologiques et medicales</topic><topic>Sciences biologiques fondamentales et appliquees. Psychologie</topic><topic>Selection, Genetic</topic><topic>Templates, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szathmáry, Eörs</creatorcontrib><creatorcontrib>Szabó, Péter</creatorcontrib><creatorcontrib>Scheuring, István</creatorcontrib><creatorcontrib>Czárán, Tamás</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szathmáry, Eörs</au><au>Szabó, Péter</au><au>Scheuring, István</au><au>Czárán, Tamás</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In silico simulations reveal that replicators with limited dispersal evolve towards higher efficiency and fidelity</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2002-11-21</date><risdate>2002</risdate><volume>420</volume><issue>6913</issue><spage>340</spage><epage>343</epage><pages>340-343</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>The emergence of functional replicases, acting quickly and with high accuracy, was crucial to the origin of life. Although where the first RNA molecules came from is still unknown, it is nevertheless assumed that catalytic RNA enzymes (ribozymes) with replicase function emerged at some early stage of evolution. The fidelity of copying is especially important because the mutation load limits the length of replicating templates that can be maintained by natural selection. An increase in template length is disadvantageous for a fixed digit copying fidelity, however, longer molecules are expected to be better replicases. An iteration for longer molecules with better replicase function has been suggested and analysed mathematically. Here we show that more efficient replicases can spread, provided they are adsorbed to a prebiotic mineral surface. A cellular automaton simulation reveals that copying fidelity, replicase speed and template efficiency all increase with evolution, despite the presence of molecular parasites, essentially because of reciprocal atruism ('within-species mutualism') on the surface, thus making a gradual improvement of replicase function more plausible.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>12447445</pmid><doi>10.1038/nature01187</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2002-11, Vol.420 (6913), p.340-343 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_27619630 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | Adsorption Binding Sites Biological Evolution Biologie moleculaire et cellulaire Biology Computer Simulation Diffusion DNA-Directed DNA Polymerase - metabolism Enzymes Evolution Evolution biologique Evolution, Molecular Genetique des eucaryotes. Evolution biologique et moleculaire Génétique moléculaire Humanities and Social Sciences Kinetics letter Models, Biological multidisciplinary Mutagenesis - genetics Mutation Mutualism Origin of Life Parasites Ribonucleic acid RNA RNA Replicase - metabolism RNA, Catalytic - metabolism Réplication Science Science (multidisciplinary) Sciences biologiques et medicales Sciences biologiques fondamentales et appliquees. Psychologie Selection, Genetic Templates, Genetic |
title | In silico simulations reveal that replicators with limited dispersal evolve towards higher efficiency and fidelity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20silico%20simulations%20reveal%20that%20replicators%20with%20limited%20dispersal%20evolve%20towards%20higher%20efficiency%20and%20fidelity&rft.jtitle=Nature%20(London)&rft.au=Szathm%C3%A1ry,%20E%C3%B6rs&rft.date=2002-11-21&rft.volume=420&rft.issue=6913&rft.spage=340&rft.epage=343&rft.pages=340-343&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature01187&rft_dat=%3Cgale_proqu%3EA187569306%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204489698&rft_id=info:pmid/12447445&rft_galeid=A187569306&rfr_iscdi=true |