Approaches to Autonomous Aerobraking at Mars

Planetary atmospheric aerobraking will most likely be incorporated in every future Mars orbiting mission. Aerobraking requires an intensive workload during operations. To provide safe and efficient aerobraking, both navigation and spacecraft system teams must be extremely diligent in updating spacec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the astronautical sciences 2002-04, Vol.50 (2), p.173-189
Hauptverfasser: Hanna, J. L., Toison, R. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 189
container_issue 2
container_start_page 173
container_title The Journal of the astronautical sciences
container_volume 50
creator Hanna, J. L.
Toison, R. H.
description Planetary atmospheric aerobraking will most likely be incorporated in every future Mars orbiting mission. Aerobraking requires an intensive workload during operations. To provide safe and efficient aerobraking, both navigation and spacecraft system teams must be extremely diligent in updating spacecraft sequences and performing periapsis raise or lower maneuvers to maintain the required orbital energy reduction without exceeding the design limits of the spacecraft. Automating the process with onboard measurements could significantly reduce the operational burden and, in addition, could reduce the potential for human error. Two levels of automation are presented and validated using part of the Mars Global Surveyor aerobraking sequence and a simulated Mars Odyssey sequence. The simplest method only provides the capability to update the onboard sequence. This method uses onboard accelerometer measurements to estimate the change in orbital period during an aerobraking pass and thereby estimates the beginning of the next aerobraking sequence. Evaluation of the method utilizing MGS accelerometer data showed that the time of the next periapsis can be estimated to within 25% 3σ of the change in the orbital period due to drag. The second approach provides complete onboard orbit propagation. A low-order gravity model is proposed that is sufficient to provide periapsis altitude predictions to within 100–200 meters over three orbits. Accelerometer measurements are used as part of the trajectory force model while the spacecraft is in the atmosphere.
doi_str_mv 10.1007/BF03546261
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27615269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27615269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-44523ad31cd68030c943e016b3c7ce2f902209f4941f541295471a6fa9ee41843</originalsourceid><addsrcrecordid>eNpdkEFLwzAYhoMoOKcXf0FB8CBWvy_5kjbHOpwKEy96DlmW6mbbzKQ97N9bmSB4ei8P7_vwMnaOcIMAxe3dHIQkxRUesAlHLXOQBR6yCQDHXCPxY3aS0gZAIGicsOtqu43Bug-fsj5k1dCHLrRhSFnlY1hG-7nu3jPbZ882plN2VNsm-bPfnLK3-f3r7DFfvDw8zapF7nhZ9jmR5MKuBLqVKkGA0yQ8oFoKVzjPaw2cg65JE9aSkGtJBVpVW-09YUliyi73vaPa1-BTb9p1cr5pbOdHNcMLhZIrPYIX_8BNGGI3uhlOQhGO-zhSV3vKxZBS9LXZxnVr484gmJ_bzN9t4htNUluk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436416801</pqid></control><display><type>article</type><title>Approaches to Autonomous Aerobraking at Mars</title><source>SpringerNature Journals</source><creator>Hanna, J. L. ; Toison, R. H.</creator><creatorcontrib>Hanna, J. L. ; Toison, R. H.</creatorcontrib><description>Planetary atmospheric aerobraking will most likely be incorporated in every future Mars orbiting mission. Aerobraking requires an intensive workload during operations. To provide safe and efficient aerobraking, both navigation and spacecraft system teams must be extremely diligent in updating spacecraft sequences and performing periapsis raise or lower maneuvers to maintain the required orbital energy reduction without exceeding the design limits of the spacecraft. Automating the process with onboard measurements could significantly reduce the operational burden and, in addition, could reduce the potential for human error. Two levels of automation are presented and validated using part of the Mars Global Surveyor aerobraking sequence and a simulated Mars Odyssey sequence. The simplest method only provides the capability to update the onboard sequence. This method uses onboard accelerometer measurements to estimate the change in orbital period during an aerobraking pass and thereby estimates the beginning of the next aerobraking sequence. Evaluation of the method utilizing MGS accelerometer data showed that the time of the next periapsis can be estimated to within 25% 3σ of the change in the orbital period due to drag. The second approach provides complete onboard orbit propagation. A low-order gravity model is proposed that is sufficient to provide periapsis altitude predictions to within 100–200 meters over three orbits. Accelerometer measurements are used as part of the trajectory force model while the spacecraft is in the atmosphere.</description><identifier>ISSN: 0021-9142</identifier><identifier>EISSN: 2195-0571</identifier><identifier>DOI: 10.1007/BF03546261</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Accelerometers ; Aerobraking ; Automation ; Computer simulation ; Human error ; Maneuvers ; Mars ; Mars Global Surveyor ; Mars Odyssey Mission (NASA) ; Measuring instruments ; Onboard ; Orbits ; Sequences ; Spacecraft</subject><ispartof>The Journal of the astronautical sciences, 2002-04, Vol.50 (2), p.173-189</ispartof><rights>American Astronautical Society 2002.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-44523ad31cd68030c943e016b3c7ce2f902209f4941f541295471a6fa9ee41843</citedby><cites>FETCH-LOGICAL-c288t-44523ad31cd68030c943e016b3c7ce2f902209f4941f541295471a6fa9ee41843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hanna, J. L.</creatorcontrib><creatorcontrib>Toison, R. H.</creatorcontrib><title>Approaches to Autonomous Aerobraking at Mars</title><title>The Journal of the astronautical sciences</title><description>Planetary atmospheric aerobraking will most likely be incorporated in every future Mars orbiting mission. Aerobraking requires an intensive workload during operations. To provide safe and efficient aerobraking, both navigation and spacecraft system teams must be extremely diligent in updating spacecraft sequences and performing periapsis raise or lower maneuvers to maintain the required orbital energy reduction without exceeding the design limits of the spacecraft. Automating the process with onboard measurements could significantly reduce the operational burden and, in addition, could reduce the potential for human error. Two levels of automation are presented and validated using part of the Mars Global Surveyor aerobraking sequence and a simulated Mars Odyssey sequence. The simplest method only provides the capability to update the onboard sequence. This method uses onboard accelerometer measurements to estimate the change in orbital period during an aerobraking pass and thereby estimates the beginning of the next aerobraking sequence. Evaluation of the method utilizing MGS accelerometer data showed that the time of the next periapsis can be estimated to within 25% 3σ of the change in the orbital period due to drag. The second approach provides complete onboard orbit propagation. A low-order gravity model is proposed that is sufficient to provide periapsis altitude predictions to within 100–200 meters over three orbits. Accelerometer measurements are used as part of the trajectory force model while the spacecraft is in the atmosphere.</description><subject>Accelerometers</subject><subject>Aerobraking</subject><subject>Automation</subject><subject>Computer simulation</subject><subject>Human error</subject><subject>Maneuvers</subject><subject>Mars</subject><subject>Mars Global Surveyor</subject><subject>Mars Odyssey Mission (NASA)</subject><subject>Measuring instruments</subject><subject>Onboard</subject><subject>Orbits</subject><subject>Sequences</subject><subject>Spacecraft</subject><issn>0021-9142</issn><issn>2195-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLwzAYhoMoOKcXf0FB8CBWvy_5kjbHOpwKEy96DlmW6mbbzKQ97N9bmSB4ei8P7_vwMnaOcIMAxe3dHIQkxRUesAlHLXOQBR6yCQDHXCPxY3aS0gZAIGicsOtqu43Bug-fsj5k1dCHLrRhSFnlY1hG-7nu3jPbZ882plN2VNsm-bPfnLK3-f3r7DFfvDw8zapF7nhZ9jmR5MKuBLqVKkGA0yQ8oFoKVzjPaw2cg65JE9aSkGtJBVpVW-09YUliyi73vaPa1-BTb9p1cr5pbOdHNcMLhZIrPYIX_8BNGGI3uhlOQhGO-zhSV3vKxZBS9LXZxnVr484gmJ_bzN9t4htNUluk</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>Hanna, J. L.</creator><creator>Toison, R. H.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20020401</creationdate><title>Approaches to Autonomous Aerobraking at Mars</title><author>Hanna, J. L. ; Toison, R. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-44523ad31cd68030c943e016b3c7ce2f902209f4941f541295471a6fa9ee41843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Accelerometers</topic><topic>Aerobraking</topic><topic>Automation</topic><topic>Computer simulation</topic><topic>Human error</topic><topic>Maneuvers</topic><topic>Mars</topic><topic>Mars Global Surveyor</topic><topic>Mars Odyssey Mission (NASA)</topic><topic>Measuring instruments</topic><topic>Onboard</topic><topic>Orbits</topic><topic>Sequences</topic><topic>Spacecraft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanna, J. L.</creatorcontrib><creatorcontrib>Toison, R. H.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>The Journal of the astronautical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanna, J. L.</au><au>Toison, R. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approaches to Autonomous Aerobraking at Mars</atitle><jtitle>The Journal of the astronautical sciences</jtitle><date>2002-04-01</date><risdate>2002</risdate><volume>50</volume><issue>2</issue><spage>173</spage><epage>189</epage><pages>173-189</pages><issn>0021-9142</issn><eissn>2195-0571</eissn><abstract>Planetary atmospheric aerobraking will most likely be incorporated in every future Mars orbiting mission. Aerobraking requires an intensive workload during operations. To provide safe and efficient aerobraking, both navigation and spacecraft system teams must be extremely diligent in updating spacecraft sequences and performing periapsis raise or lower maneuvers to maintain the required orbital energy reduction without exceeding the design limits of the spacecraft. Automating the process with onboard measurements could significantly reduce the operational burden and, in addition, could reduce the potential for human error. Two levels of automation are presented and validated using part of the Mars Global Surveyor aerobraking sequence and a simulated Mars Odyssey sequence. The simplest method only provides the capability to update the onboard sequence. This method uses onboard accelerometer measurements to estimate the change in orbital period during an aerobraking pass and thereby estimates the beginning of the next aerobraking sequence. Evaluation of the method utilizing MGS accelerometer data showed that the time of the next periapsis can be estimated to within 25% 3σ of the change in the orbital period due to drag. The second approach provides complete onboard orbit propagation. A low-order gravity model is proposed that is sufficient to provide periapsis altitude predictions to within 100–200 meters over three orbits. Accelerometer measurements are used as part of the trajectory force model while the spacecraft is in the atmosphere.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF03546261</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9142
ispartof The Journal of the astronautical sciences, 2002-04, Vol.50 (2), p.173-189
issn 0021-9142
2195-0571
language eng
recordid cdi_proquest_miscellaneous_27615269
source SpringerNature Journals
subjects Accelerometers
Aerobraking
Automation
Computer simulation
Human error
Maneuvers
Mars
Mars Global Surveyor
Mars Odyssey Mission (NASA)
Measuring instruments
Onboard
Orbits
Sequences
Spacecraft
title Approaches to Autonomous Aerobraking at Mars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A02%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approaches%20to%20Autonomous%20Aerobraking%20at%20Mars&rft.jtitle=The%20Journal%20of%20the%20astronautical%20sciences&rft.au=Hanna,%20J.%20L.&rft.date=2002-04-01&rft.volume=50&rft.issue=2&rft.spage=173&rft.epage=189&rft.pages=173-189&rft.issn=0021-9142&rft.eissn=2195-0571&rft_id=info:doi/10.1007/BF03546261&rft_dat=%3Cproquest_cross%3E27615269%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436416801&rft_id=info:pmid/&rfr_iscdi=true