On electrochemical impedance measurements of Li sub(x)Co sub(0.2)Ni sub(0.8)O sub(2) and Li sub(x)NiO sub(2) intercalation electrodes

Nyquist plots measured from thin Li sub(x)Co sub(0.2)Ni sub(0.8)O sub(2) electrodes at different potentials in Li-salt solutions include two semicircles, one relating to the high-frequency domain and the other referring to the medium-to-low frequency range. Based on fine features of the dependence o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2000-01, Vol.45 (11), p.1781-1789
Hauptverfasser: Levi, M D, Gamolsky, K, Aurbach, D, Heider, U, Oesten, R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1789
container_issue 11
container_start_page 1781
container_title Electrochimica acta
container_volume 45
creator Levi, M D
Gamolsky, K
Aurbach, D
Heider, U
Oesten, R
description Nyquist plots measured from thin Li sub(x)Co sub(0.2)Ni sub(0.8)O sub(2) electrodes at different potentials in Li-salt solutions include two semicircles, one relating to the high-frequency domain and the other referring to the medium-to-low frequency range. Based on fine features of the dependence of the diameter of these two semicircles on the potential (R sub(sl) and R sub(ct) versus E), and the estimated values of related capacities, we assigned these semicircles to (i) Li ion migration through a surface layer covering the active mass particles and (ii) interfacial charge-transfer, respectively. We have applied an approach based on a simple Frumkin-type sorption isotherm in order to explain the experimental R sub(ct) versus E relationship. The absolute values of the double-layer capacity (several mF per 1 cm super(2) of visible surface area) can be rationalized in terms of the porous structure of the composite electrodes and assuming an increase in surface area and appearance of disorder on the surface layer|particle interface after the electrodes cycling. Nyquist plots of these electrodes can be successfully modeled by a combination of two (RC) semicircles with the so-called Frumkin and Melik-Gaykazyan impedance that provides a good fit to the experimental plots measured down to a mHz range. Only minor differences in the shape of the impedance spectra measured from Li sub(x)Co sub(0.2)Ni sub(0.8)O sub(2) and Li sub(x)NiO sub(2) electrodes could be observed. The former electrode seems to undergo a somewhat more rapid degradation at high anodic polarization than the latter, as follows from both cyclic voltammetry and electrochemical impedance measurements. However, this more rapid degradation in capacity is not related to interfacial changes, but rather to changes in the bulk material.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_27615109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27615109</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_276151093</originalsourceid><addsrcrecordid>eNqNjbsKwjAYRjMoWC_vkEnsoKStpjoXxUHs4l5i-hcjuWj_BHwB31spoqvTd_g4cHokYizJ5ku-5gMyRLwyxnKes4g8S0tBg_StkxcwSgpNlblBLawEakBgaMGA9UhdQw-KYjjPHnHhOmCLND6qD67jsqM0psLWP_eovr-yHtp3Qnjlvt0acEz6jdAIk8-OyHS3PRX7-a119wDoK6NQgtbCggtYpTlPVgnbZH-LLx0YUWU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27615109</pqid></control><display><type>article</type><title>On electrochemical impedance measurements of Li sub(x)Co sub(0.2)Ni sub(0.8)O sub(2) and Li sub(x)NiO sub(2) intercalation electrodes</title><source>Access via ScienceDirect (Elsevier)</source><creator>Levi, M D ; Gamolsky, K ; Aurbach, D ; Heider, U ; Oesten, R</creator><creatorcontrib>Levi, M D ; Gamolsky, K ; Aurbach, D ; Heider, U ; Oesten, R</creatorcontrib><description>Nyquist plots measured from thin Li sub(x)Co sub(0.2)Ni sub(0.8)O sub(2) electrodes at different potentials in Li-salt solutions include two semicircles, one relating to the high-frequency domain and the other referring to the medium-to-low frequency range. Based on fine features of the dependence of the diameter of these two semicircles on the potential (R sub(sl) and R sub(ct) versus E), and the estimated values of related capacities, we assigned these semicircles to (i) Li ion migration through a surface layer covering the active mass particles and (ii) interfacial charge-transfer, respectively. We have applied an approach based on a simple Frumkin-type sorption isotherm in order to explain the experimental R sub(ct) versus E relationship. The absolute values of the double-layer capacity (several mF per 1 cm super(2) of visible surface area) can be rationalized in terms of the porous structure of the composite electrodes and assuming an increase in surface area and appearance of disorder on the surface layer|particle interface after the electrodes cycling. Nyquist plots of these electrodes can be successfully modeled by a combination of two (RC) semicircles with the so-called Frumkin and Melik-Gaykazyan impedance that provides a good fit to the experimental plots measured down to a mHz range. Only minor differences in the shape of the impedance spectra measured from Li sub(x)Co sub(0.2)Ni sub(0.8)O sub(2) and Li sub(x)NiO sub(2) electrodes could be observed. The former electrode seems to undergo a somewhat more rapid degradation at high anodic polarization than the latter, as follows from both cyclic voltammetry and electrochemical impedance measurements. However, this more rapid degradation in capacity is not related to interfacial changes, but rather to changes in the bulk material.</description><identifier>ISSN: 0013-4686</identifier><language>eng</language><ispartof>Electrochimica acta, 2000-01, Vol.45 (11), p.1781-1789</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Levi, M D</creatorcontrib><creatorcontrib>Gamolsky, K</creatorcontrib><creatorcontrib>Aurbach, D</creatorcontrib><creatorcontrib>Heider, U</creatorcontrib><creatorcontrib>Oesten, R</creatorcontrib><title>On electrochemical impedance measurements of Li sub(x)Co sub(0.2)Ni sub(0.8)O sub(2) and Li sub(x)NiO sub(2) intercalation electrodes</title><title>Electrochimica acta</title><description>Nyquist plots measured from thin Li sub(x)Co sub(0.2)Ni sub(0.8)O sub(2) electrodes at different potentials in Li-salt solutions include two semicircles, one relating to the high-frequency domain and the other referring to the medium-to-low frequency range. Based on fine features of the dependence of the diameter of these two semicircles on the potential (R sub(sl) and R sub(ct) versus E), and the estimated values of related capacities, we assigned these semicircles to (i) Li ion migration through a surface layer covering the active mass particles and (ii) interfacial charge-transfer, respectively. We have applied an approach based on a simple Frumkin-type sorption isotherm in order to explain the experimental R sub(ct) versus E relationship. The absolute values of the double-layer capacity (several mF per 1 cm super(2) of visible surface area) can be rationalized in terms of the porous structure of the composite electrodes and assuming an increase in surface area and appearance of disorder on the surface layer|particle interface after the electrodes cycling. Nyquist plots of these electrodes can be successfully modeled by a combination of two (RC) semicircles with the so-called Frumkin and Melik-Gaykazyan impedance that provides a good fit to the experimental plots measured down to a mHz range. Only minor differences in the shape of the impedance spectra measured from Li sub(x)Co sub(0.2)Ni sub(0.8)O sub(2) and Li sub(x)NiO sub(2) electrodes could be observed. The former electrode seems to undergo a somewhat more rapid degradation at high anodic polarization than the latter, as follows from both cyclic voltammetry and electrochemical impedance measurements. However, this more rapid degradation in capacity is not related to interfacial changes, but rather to changes in the bulk material.</description><issn>0013-4686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqNjbsKwjAYRjMoWC_vkEnsoKStpjoXxUHs4l5i-hcjuWj_BHwB31spoqvTd_g4cHokYizJ5ku-5gMyRLwyxnKes4g8S0tBg_StkxcwSgpNlblBLawEakBgaMGA9UhdQw-KYjjPHnHhOmCLND6qD67jsqM0psLWP_eovr-yHtp3Qnjlvt0acEz6jdAIk8-OyHS3PRX7-a119wDoK6NQgtbCggtYpTlPVgnbZH-LLx0YUWU</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Levi, M D</creator><creator>Gamolsky, K</creator><creator>Aurbach, D</creator><creator>Heider, U</creator><creator>Oesten, R</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20000101</creationdate><title>On electrochemical impedance measurements of Li sub(x)Co sub(0.2)Ni sub(0.8)O sub(2) and Li sub(x)NiO sub(2) intercalation electrodes</title><author>Levi, M D ; Gamolsky, K ; Aurbach, D ; Heider, U ; Oesten, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_276151093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levi, M D</creatorcontrib><creatorcontrib>Gamolsky, K</creatorcontrib><creatorcontrib>Aurbach, D</creatorcontrib><creatorcontrib>Heider, U</creatorcontrib><creatorcontrib>Oesten, R</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levi, M D</au><au>Gamolsky, K</au><au>Aurbach, D</au><au>Heider, U</au><au>Oesten, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On electrochemical impedance measurements of Li sub(x)Co sub(0.2)Ni sub(0.8)O sub(2) and Li sub(x)NiO sub(2) intercalation electrodes</atitle><jtitle>Electrochimica acta</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>45</volume><issue>11</issue><spage>1781</spage><epage>1789</epage><pages>1781-1789</pages><issn>0013-4686</issn><abstract>Nyquist plots measured from thin Li sub(x)Co sub(0.2)Ni sub(0.8)O sub(2) electrodes at different potentials in Li-salt solutions include two semicircles, one relating to the high-frequency domain and the other referring to the medium-to-low frequency range. Based on fine features of the dependence of the diameter of these two semicircles on the potential (R sub(sl) and R sub(ct) versus E), and the estimated values of related capacities, we assigned these semicircles to (i) Li ion migration through a surface layer covering the active mass particles and (ii) interfacial charge-transfer, respectively. We have applied an approach based on a simple Frumkin-type sorption isotherm in order to explain the experimental R sub(ct) versus E relationship. The absolute values of the double-layer capacity (several mF per 1 cm super(2) of visible surface area) can be rationalized in terms of the porous structure of the composite electrodes and assuming an increase in surface area and appearance of disorder on the surface layer|particle interface after the electrodes cycling. Nyquist plots of these electrodes can be successfully modeled by a combination of two (RC) semicircles with the so-called Frumkin and Melik-Gaykazyan impedance that provides a good fit to the experimental plots measured down to a mHz range. Only minor differences in the shape of the impedance spectra measured from Li sub(x)Co sub(0.2)Ni sub(0.8)O sub(2) and Li sub(x)NiO sub(2) electrodes could be observed. The former electrode seems to undergo a somewhat more rapid degradation at high anodic polarization than the latter, as follows from both cyclic voltammetry and electrochemical impedance measurements. However, this more rapid degradation in capacity is not related to interfacial changes, but rather to changes in the bulk material.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2000-01, Vol.45 (11), p.1781-1789
issn 0013-4686
language eng
recordid cdi_proquest_miscellaneous_27615109
source Access via ScienceDirect (Elsevier)
title On electrochemical impedance measurements of Li sub(x)Co sub(0.2)Ni sub(0.8)O sub(2) and Li sub(x)NiO sub(2) intercalation electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20electrochemical%20impedance%20measurements%20of%20Li%20sub(x)Co%20sub(0.2)Ni%20sub(0.8)O%20sub(2)%20and%20Li%20sub(x)NiO%20sub(2)%20intercalation%20electrodes&rft.jtitle=Electrochimica%20acta&rft.au=Levi,%20M%20D&rft.date=2000-01-01&rft.volume=45&rft.issue=11&rft.spage=1781&rft.epage=1789&rft.pages=1781-1789&rft.issn=0013-4686&rft_id=info:doi/&rft_dat=%3Cproquest%3E27615109%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27615109&rft_id=info:pmid/&rfr_iscdi=true