Influence of initialisation and stop criteria on HMM based recognisers

A study is presented into the importance of two commonly overlooked factors influencing generalisation ability in the field of hidden Markov model (HMM) based recogniser training algorithms by means of a comparative study of four initialisation methods and three stop criteria in different applicatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics letters 2000-06, Vol.36 (13), p.1165-1166
Hauptverfasser: Ferrer, M A, Alonso, I G, Travieso, C M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A study is presented into the importance of two commonly overlooked factors influencing generalisation ability in the field of hidden Markov model (HMM) based recogniser training algorithms by means of a comparative study of four initialisation methods and three stop criteria in different applications. The results show that better results have been found with the equal-occupancy initialisation method and the fixed-threshold stop criterion.
ISSN:0013-5194
DOI:10.1049/el:20000826