Green synthesis of naphthyl derivative as an optical sensor for the detection of l‐carnitine in food samples

An economical and green approach to the synthesis of naphthyl derivative for detection of l‐carnitine (3‐hydroxy‐4‐N‐trimethyl‐aminobutyrate) is practically important. We developed a naphthyl derivative as a probe showing ‘turn‐on’ response towards l‐carnitine selectively at pH 7.2 through ICT mecha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Luminescence (Chichester, England) England), 2023-03, Vol.38 (3), p.224-231
Hauptverfasser: Raja, Lavanya, Venkatesan, Srinivasadesikan, Lin, Ming‐Chang, Vediappen, Padmini
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 231
container_issue 3
container_start_page 224
container_title Luminescence (Chichester, England)
container_volume 38
creator Raja, Lavanya
Venkatesan, Srinivasadesikan
Lin, Ming‐Chang
Vediappen, Padmini
description An economical and green approach to the synthesis of naphthyl derivative for detection of l‐carnitine (3‐hydroxy‐4‐N‐trimethyl‐aminobutyrate) is practically important. We developed a naphthyl derivative as a probe showing ‘turn‐on’ response towards l‐carnitine selectively at pH 7.2 through ICT mechanism with a good limit of detection (LOD) of 0.126 μM. Using Job's plot for determining the binding stoichiometry, it was found that probe could form a more stable complex (1:1) with carnitine. The binding constant (K) between probe and carnitine was calculated as 8 × 107 M−1 using the Benesi–Hildebrand plot. The binding interaction of the probe with l‐carnitine was confirmed by nuclear magnetic resonance titrations, Fourier‐transform infrared spectroscopy, photo physical studies and density functional theory calculations. Meanwhile, the probe can be used to quantitatively detect carnitine in food samples. The sensor naphthyl derivative probe was synthesized by a simple method with high yield. The sensor colorimetric and fluorometric detection of l‐ Carnitine very easily in aqueous medium. The probe was easily recognized l‐ Carnitine compare than other biomolecules. The l‐ Carnitine detection of limit 126 nM in aqueous medium. In addition, the probe tested l‐ Carnitine in real sample analysis.
doi_str_mv 10.1002/bio.4436
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2761180207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785107884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3496-3ebfcf8cc41e4e716f34e1ee6f7dbbcca6255b71cacc73bf4b7ca3c6e89b94a73</originalsourceid><addsrcrecordid>eNp1kUtKBDEQhoMovsETSMCNm9akk066lyq-YGA2um6STIXJ0JO0SY8yO4_gGT2JGccHCC6KqsVXH0X9CB1RckYJKc-1C2ecM7GBdmlVloUsOdv8mVm1g_ZSmhFChBDNNtphQpCS8mYX-dsI4HFa-mEKySUcLPaqnw7TZYcnEN2zGtwzYJWw8jj0gzOqwwl8ChHbXHktcwOYwQW_2u7eX9-Mit4NzgN2PlNhgpOa9x2kA7RlVZfg8Kvvo8eb64eru2I0vr2_uhgVhvFGFAy0NbY2hlPgIKmwjAMFEFZOtDZGibKqtKRGGSOZtlxLo5gRUDe64UqyfXS69vYxPC0gDe3cJQNdpzyERWpLKSitSUlW6MkfdBYW0efrMlVXlMi65r9CE0NKEWzbRzdXcdlS0q4yaHMG7SqDjB5_CRd6DpMf8PvpGSjWwIvrYPmvqL28H38KPwDympLR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785107884</pqid></control><display><type>article</type><title>Green synthesis of naphthyl derivative as an optical sensor for the detection of l‐carnitine in food samples</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Raja, Lavanya ; Venkatesan, Srinivasadesikan ; Lin, Ming‐Chang ; Vediappen, Padmini</creator><creatorcontrib>Raja, Lavanya ; Venkatesan, Srinivasadesikan ; Lin, Ming‐Chang ; Vediappen, Padmini</creatorcontrib><description>An economical and green approach to the synthesis of naphthyl derivative for detection of l‐carnitine (3‐hydroxy‐4‐N‐trimethyl‐aminobutyrate) is practically important. We developed a naphthyl derivative as a probe showing ‘turn‐on’ response towards l‐carnitine selectively at pH 7.2 through ICT mechanism with a good limit of detection (LOD) of 0.126 μM. Using Job's plot for determining the binding stoichiometry, it was found that probe could form a more stable complex (1:1) with carnitine. The binding constant (K) between probe and carnitine was calculated as 8 × 107 M−1 using the Benesi–Hildebrand plot. The binding interaction of the probe with l‐carnitine was confirmed by nuclear magnetic resonance titrations, Fourier‐transform infrared spectroscopy, photo physical studies and density functional theory calculations. Meanwhile, the probe can be used to quantitatively detect carnitine in food samples. The sensor naphthyl derivative probe was synthesized by a simple method with high yield. The sensor colorimetric and fluorometric detection of l‐ Carnitine very easily in aqueous medium. The probe was easily recognized l‐ Carnitine compare than other biomolecules. The l‐ Carnitine detection of limit 126 nM in aqueous medium. In addition, the probe tested l‐ Carnitine in real sample analysis.</description><identifier>ISSN: 1522-7235</identifier><identifier>EISSN: 1522-7243</identifier><identifier>DOI: 10.1002/bio.4436</identifier><identifier>PMID: 36602149</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Analytical methods ; Binding ; Carnitine ; chemodosimeter ; Density functional theory ; Detection ; Fluorescent Dyes - chemistry ; Food ; Foods ; ICT ; Infrared spectroscopy ; Limit of Detection ; LOD and DFT calculations ; l‐carnitine ; Magnetic Resonance Spectroscopy ; Mathematical analysis ; naphthyl derivative ; NMR ; Nuclear magnetic resonance ; Optical measuring instruments ; Stoichiometry ; Synthesis ; Titration</subject><ispartof>Luminescence (Chichester, England), 2023-03, Vol.38 (3), p.224-231</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3496-3ebfcf8cc41e4e716f34e1ee6f7dbbcca6255b71cacc73bf4b7ca3c6e89b94a73</citedby><cites>FETCH-LOGICAL-c3496-3ebfcf8cc41e4e716f34e1ee6f7dbbcca6255b71cacc73bf4b7ca3c6e89b94a73</cites><orcidid>0000-0002-6103-6432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbio.4436$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbio.4436$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36602149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Raja, Lavanya</creatorcontrib><creatorcontrib>Venkatesan, Srinivasadesikan</creatorcontrib><creatorcontrib>Lin, Ming‐Chang</creatorcontrib><creatorcontrib>Vediappen, Padmini</creatorcontrib><title>Green synthesis of naphthyl derivative as an optical sensor for the detection of l‐carnitine in food samples</title><title>Luminescence (Chichester, England)</title><addtitle>Luminescence</addtitle><description>An economical and green approach to the synthesis of naphthyl derivative for detection of l‐carnitine (3‐hydroxy‐4‐N‐trimethyl‐aminobutyrate) is practically important. We developed a naphthyl derivative as a probe showing ‘turn‐on’ response towards l‐carnitine selectively at pH 7.2 through ICT mechanism with a good limit of detection (LOD) of 0.126 μM. Using Job's plot for determining the binding stoichiometry, it was found that probe could form a more stable complex (1:1) with carnitine. The binding constant (K) between probe and carnitine was calculated as 8 × 107 M−1 using the Benesi–Hildebrand plot. The binding interaction of the probe with l‐carnitine was confirmed by nuclear magnetic resonance titrations, Fourier‐transform infrared spectroscopy, photo physical studies and density functional theory calculations. Meanwhile, the probe can be used to quantitatively detect carnitine in food samples. The sensor naphthyl derivative probe was synthesized by a simple method with high yield. The sensor colorimetric and fluorometric detection of l‐ Carnitine very easily in aqueous medium. The probe was easily recognized l‐ Carnitine compare than other biomolecules. The l‐ Carnitine detection of limit 126 nM in aqueous medium. In addition, the probe tested l‐ Carnitine in real sample analysis.</description><subject>Analytical methods</subject><subject>Binding</subject><subject>Carnitine</subject><subject>chemodosimeter</subject><subject>Density functional theory</subject><subject>Detection</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Food</subject><subject>Foods</subject><subject>ICT</subject><subject>Infrared spectroscopy</subject><subject>Limit of Detection</subject><subject>LOD and DFT calculations</subject><subject>l‐carnitine</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Mathematical analysis</subject><subject>naphthyl derivative</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Optical measuring instruments</subject><subject>Stoichiometry</subject><subject>Synthesis</subject><subject>Titration</subject><issn>1522-7235</issn><issn>1522-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUtKBDEQhoMovsETSMCNm9akk066lyq-YGA2um6STIXJ0JO0SY8yO4_gGT2JGccHCC6KqsVXH0X9CB1RckYJKc-1C2ecM7GBdmlVloUsOdv8mVm1g_ZSmhFChBDNNtphQpCS8mYX-dsI4HFa-mEKySUcLPaqnw7TZYcnEN2zGtwzYJWw8jj0gzOqwwl8ChHbXHktcwOYwQW_2u7eX9-Mit4NzgN2PlNhgpOa9x2kA7RlVZfg8Kvvo8eb64eru2I0vr2_uhgVhvFGFAy0NbY2hlPgIKmwjAMFEFZOtDZGibKqtKRGGSOZtlxLo5gRUDe64UqyfXS69vYxPC0gDe3cJQNdpzyERWpLKSitSUlW6MkfdBYW0efrMlVXlMi65r9CE0NKEWzbRzdXcdlS0q4yaHMG7SqDjB5_CRd6DpMf8PvpGSjWwIvrYPmvqL28H38KPwDympLR</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Raja, Lavanya</creator><creator>Venkatesan, Srinivasadesikan</creator><creator>Lin, Ming‐Chang</creator><creator>Vediappen, Padmini</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H95</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6103-6432</orcidid></search><sort><creationdate>202303</creationdate><title>Green synthesis of naphthyl derivative as an optical sensor for the detection of l‐carnitine in food samples</title><author>Raja, Lavanya ; Venkatesan, Srinivasadesikan ; Lin, Ming‐Chang ; Vediappen, Padmini</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3496-3ebfcf8cc41e4e716f34e1ee6f7dbbcca6255b71cacc73bf4b7ca3c6e89b94a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical methods</topic><topic>Binding</topic><topic>Carnitine</topic><topic>chemodosimeter</topic><topic>Density functional theory</topic><topic>Detection</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Food</topic><topic>Foods</topic><topic>ICT</topic><topic>Infrared spectroscopy</topic><topic>Limit of Detection</topic><topic>LOD and DFT calculations</topic><topic>l‐carnitine</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Mathematical analysis</topic><topic>naphthyl derivative</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Optical measuring instruments</topic><topic>Stoichiometry</topic><topic>Synthesis</topic><topic>Titration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raja, Lavanya</creatorcontrib><creatorcontrib>Venkatesan, Srinivasadesikan</creatorcontrib><creatorcontrib>Lin, Ming‐Chang</creatorcontrib><creatorcontrib>Vediappen, Padmini</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Luminescence (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raja, Lavanya</au><au>Venkatesan, Srinivasadesikan</au><au>Lin, Ming‐Chang</au><au>Vediappen, Padmini</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green synthesis of naphthyl derivative as an optical sensor for the detection of l‐carnitine in food samples</atitle><jtitle>Luminescence (Chichester, England)</jtitle><addtitle>Luminescence</addtitle><date>2023-03</date><risdate>2023</risdate><volume>38</volume><issue>3</issue><spage>224</spage><epage>231</epage><pages>224-231</pages><issn>1522-7235</issn><eissn>1522-7243</eissn><abstract>An economical and green approach to the synthesis of naphthyl derivative for detection of l‐carnitine (3‐hydroxy‐4‐N‐trimethyl‐aminobutyrate) is practically important. We developed a naphthyl derivative as a probe showing ‘turn‐on’ response towards l‐carnitine selectively at pH 7.2 through ICT mechanism with a good limit of detection (LOD) of 0.126 μM. Using Job's plot for determining the binding stoichiometry, it was found that probe could form a more stable complex (1:1) with carnitine. The binding constant (K) between probe and carnitine was calculated as 8 × 107 M−1 using the Benesi–Hildebrand plot. The binding interaction of the probe with l‐carnitine was confirmed by nuclear magnetic resonance titrations, Fourier‐transform infrared spectroscopy, photo physical studies and density functional theory calculations. Meanwhile, the probe can be used to quantitatively detect carnitine in food samples. The sensor naphthyl derivative probe was synthesized by a simple method with high yield. The sensor colorimetric and fluorometric detection of l‐ Carnitine very easily in aqueous medium. The probe was easily recognized l‐ Carnitine compare than other biomolecules. The l‐ Carnitine detection of limit 126 nM in aqueous medium. In addition, the probe tested l‐ Carnitine in real sample analysis.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36602149</pmid><doi>10.1002/bio.4436</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6103-6432</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1522-7235
ispartof Luminescence (Chichester, England), 2023-03, Vol.38 (3), p.224-231
issn 1522-7235
1522-7243
language eng
recordid cdi_proquest_miscellaneous_2761180207
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Analytical methods
Binding
Carnitine
chemodosimeter
Density functional theory
Detection
Fluorescent Dyes - chemistry
Food
Foods
ICT
Infrared spectroscopy
Limit of Detection
LOD and DFT calculations
l‐carnitine
Magnetic Resonance Spectroscopy
Mathematical analysis
naphthyl derivative
NMR
Nuclear magnetic resonance
Optical measuring instruments
Stoichiometry
Synthesis
Titration
title Green synthesis of naphthyl derivative as an optical sensor for the detection of l‐carnitine in food samples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A56%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green%20synthesis%20of%20naphthyl%20derivative%20as%20an%20optical%20sensor%20for%20the%20detection%20of%20l%E2%80%90carnitine%20in%20food%20samples&rft.jtitle=Luminescence%20(Chichester,%20England)&rft.au=Raja,%20Lavanya&rft.date=2023-03&rft.volume=38&rft.issue=3&rft.spage=224&rft.epage=231&rft.pages=224-231&rft.issn=1522-7235&rft.eissn=1522-7243&rft_id=info:doi/10.1002/bio.4436&rft_dat=%3Cproquest_cross%3E2785107884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785107884&rft_id=info:pmid/36602149&rfr_iscdi=true