Intensification of enzymatic hydrolysis of penicillin G: Part 2. model for enzymatic reaction with reactive extraction
During the enzymatic hydrolysis of the potassium salt of Penicillin-G (PenGK) into Phenylacetic acid (PAA) and potassium salt of 6-Aminopenicillanic acid (6-APA), the pH of the reaction mixture falls on account of accumulation of PAA. This lowers the stability and activity of the enzyme used, viz.,...
Gespeichert in:
Veröffentlicht in: | Chemical engineering science 2002-06, Vol.57 (11), p.1985-1992 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1992 |
---|---|
container_issue | 11 |
container_start_page | 1985 |
container_title | Chemical engineering science |
container_volume | 57 |
creator | Gaidhani, H.K. Tolani, V.L. Pangarkar, K.V. Pangarkar, V.G. |
description | During the enzymatic hydrolysis of the potassium salt of Penicillin-G (PenGK) into Phenylacetic acid (PAA) and potassium salt of 6-Aminopenicillanic acid (6-APA), the pH of the reaction mixture falls on account of accumulation of PAA. This lowers the stability and activity of the enzyme used, viz., Penicillin-G acylase (PGA). A new approach of extracting the PAA by a long-chain tertiary amine, which is in the dispersed phase, as a liquid ion exchanger (LIX), is presented. A mathematical model has been developed for this slurry phase reactor with PenGK in the continuous aqueous phase, the amine alongwith a diluent in the dispersed organic phase and the immobilized PGA enzyme as the solid catalyst. Effects of various parameters affecting the conversion of PenG have been discussed. The model has been solved for batch and semi-batch modes. It has been shown that the semi-batch mode yields a higher productivity. This approach can also be advantageously used for other intermediates like 7-ADCA for cephalosporins. |
doi_str_mv | 10.1016/S0009-2509(02)00079-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27609579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250902000799</els_id><sourcerecordid>623668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-481f3e25a80eb90332c48a2aca9e18d642d73e10930fec28367b380a46222e863</originalsourceid><addsrcrecordid>eNqFkUFPGzEQha2qSE0pP6GSLyB62HRs765tLgihkiJFAgl6tox3Vhht7GAvge2vJ5tEtLecRm_8zTxrHiHfGUwZsPrnHQDoglegT4H_WAupC_2JTJiSoihLqD6TyQfyhXzN-WmEJIMJWV2HHkP2rXe29zHQ2FIMf4fFWjn6ODQpdkP2eewvMXjnu84HOjujtzb1lE_pIjbY0Tam_-YSWrfZ9ur7x51aIcW3Pm0fvpGD1nYZj3b1kPy5-nV_-buY38yuLy_mhStF3RelYq1AXlkF-KBBCO5KZbl1ViNTTV3yRgpkoAW06LgStXwQCmxZc85R1eKQnGz3LlN8fsHcm4XPDrvOBowv2XBZg66k3g-yUism5RqstqBLMeeErVkmv7BpMAzMGIfZxGHGWxvgZhOHGQ2OdwY2O9u1yQbn879hIbmuxfjj8y2H67OsPCaTncfgsPEJXW-a6Pc4vQOI0J-N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21498177</pqid></control><display><type>article</type><title>Intensification of enzymatic hydrolysis of penicillin G: Part 2. model for enzymatic reaction with reactive extraction</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Gaidhani, H.K. ; Tolani, V.L. ; Pangarkar, K.V. ; Pangarkar, V.G.</creator><creatorcontrib>Gaidhani, H.K. ; Tolani, V.L. ; Pangarkar, K.V. ; Pangarkar, V.G.</creatorcontrib><description>During the enzymatic hydrolysis of the potassium salt of Penicillin-G (PenGK) into Phenylacetic acid (PAA) and potassium salt of 6-Aminopenicillanic acid (6-APA), the pH of the reaction mixture falls on account of accumulation of PAA. This lowers the stability and activity of the enzyme used, viz., Penicillin-G acylase (PGA). A new approach of extracting the PAA by a long-chain tertiary amine, which is in the dispersed phase, as a liquid ion exchanger (LIX), is presented. A mathematical model has been developed for this slurry phase reactor with PenGK in the continuous aqueous phase, the amine alongwith a diluent in the dispersed organic phase and the immobilized PGA enzyme as the solid catalyst. Effects of various parameters affecting the conversion of PenG have been discussed. The model has been solved for batch and semi-batch modes. It has been shown that the semi-batch mode yields a higher productivity. This approach can also be advantageously used for other intermediates like 7-ADCA for cephalosporins.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/S0009-2509(02)00079-9</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>6-APA ; Amines ; Antibacterial agents ; Antibiotics. Antiinfectious agents. Antiparasitic agents ; Biological and medical sciences ; Catalysts ; Chemical reactors ; Enzymes ; Extraction ; Hydrolysis ; Intensification ; Ion exchangers ; Mathematical models ; Medical sciences ; Penicillin G ; Pharmacology. Drug treatments ; Reactive extraction ; Solutions</subject><ispartof>Chemical engineering science, 2002-06, Vol.57 (11), p.1985-1992</ispartof><rights>2002</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-481f3e25a80eb90332c48a2aca9e18d642d73e10930fec28367b380a46222e863</citedby><cites>FETCH-LOGICAL-c436t-481f3e25a80eb90332c48a2aca9e18d642d73e10930fec28367b380a46222e863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0009-2509(02)00079-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13729636$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaidhani, H.K.</creatorcontrib><creatorcontrib>Tolani, V.L.</creatorcontrib><creatorcontrib>Pangarkar, K.V.</creatorcontrib><creatorcontrib>Pangarkar, V.G.</creatorcontrib><title>Intensification of enzymatic hydrolysis of penicillin G: Part 2. model for enzymatic reaction with reactive extraction</title><title>Chemical engineering science</title><description>During the enzymatic hydrolysis of the potassium salt of Penicillin-G (PenGK) into Phenylacetic acid (PAA) and potassium salt of 6-Aminopenicillanic acid (6-APA), the pH of the reaction mixture falls on account of accumulation of PAA. This lowers the stability and activity of the enzyme used, viz., Penicillin-G acylase (PGA). A new approach of extracting the PAA by a long-chain tertiary amine, which is in the dispersed phase, as a liquid ion exchanger (LIX), is presented. A mathematical model has been developed for this slurry phase reactor with PenGK in the continuous aqueous phase, the amine alongwith a diluent in the dispersed organic phase and the immobilized PGA enzyme as the solid catalyst. Effects of various parameters affecting the conversion of PenG have been discussed. The model has been solved for batch and semi-batch modes. It has been shown that the semi-batch mode yields a higher productivity. This approach can also be advantageously used for other intermediates like 7-ADCA for cephalosporins.</description><subject>6-APA</subject><subject>Amines</subject><subject>Antibacterial agents</subject><subject>Antibiotics. Antiinfectious agents. Antiparasitic agents</subject><subject>Biological and medical sciences</subject><subject>Catalysts</subject><subject>Chemical reactors</subject><subject>Enzymes</subject><subject>Extraction</subject><subject>Hydrolysis</subject><subject>Intensification</subject><subject>Ion exchangers</subject><subject>Mathematical models</subject><subject>Medical sciences</subject><subject>Penicillin G</subject><subject>Pharmacology. Drug treatments</subject><subject>Reactive extraction</subject><subject>Solutions</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkUFPGzEQha2qSE0pP6GSLyB62HRs765tLgihkiJFAgl6tox3Vhht7GAvge2vJ5tEtLecRm_8zTxrHiHfGUwZsPrnHQDoglegT4H_WAupC_2JTJiSoihLqD6TyQfyhXzN-WmEJIMJWV2HHkP2rXe29zHQ2FIMf4fFWjn6ODQpdkP2eewvMXjnu84HOjujtzb1lE_pIjbY0Tam_-YSWrfZ9ur7x51aIcW3Pm0fvpGD1nYZj3b1kPy5-nV_-buY38yuLy_mhStF3RelYq1AXlkF-KBBCO5KZbl1ViNTTV3yRgpkoAW06LgStXwQCmxZc85R1eKQnGz3LlN8fsHcm4XPDrvOBowv2XBZg66k3g-yUism5RqstqBLMeeErVkmv7BpMAzMGIfZxGHGWxvgZhOHGQ2OdwY2O9u1yQbn879hIbmuxfjj8y2H67OsPCaTncfgsPEJXW-a6Pc4vQOI0J-N</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Gaidhani, H.K.</creator><creator>Tolani, V.L.</creator><creator>Pangarkar, K.V.</creator><creator>Pangarkar, V.G.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20020601</creationdate><title>Intensification of enzymatic hydrolysis of penicillin G: Part 2. model for enzymatic reaction with reactive extraction</title><author>Gaidhani, H.K. ; Tolani, V.L. ; Pangarkar, K.V. ; Pangarkar, V.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-481f3e25a80eb90332c48a2aca9e18d642d73e10930fec28367b380a46222e863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>6-APA</topic><topic>Amines</topic><topic>Antibacterial agents</topic><topic>Antibiotics. Antiinfectious agents. Antiparasitic agents</topic><topic>Biological and medical sciences</topic><topic>Catalysts</topic><topic>Chemical reactors</topic><topic>Enzymes</topic><topic>Extraction</topic><topic>Hydrolysis</topic><topic>Intensification</topic><topic>Ion exchangers</topic><topic>Mathematical models</topic><topic>Medical sciences</topic><topic>Penicillin G</topic><topic>Pharmacology. Drug treatments</topic><topic>Reactive extraction</topic><topic>Solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaidhani, H.K.</creatorcontrib><creatorcontrib>Tolani, V.L.</creatorcontrib><creatorcontrib>Pangarkar, K.V.</creatorcontrib><creatorcontrib>Pangarkar, V.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaidhani, H.K.</au><au>Tolani, V.L.</au><au>Pangarkar, K.V.</au><au>Pangarkar, V.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intensification of enzymatic hydrolysis of penicillin G: Part 2. model for enzymatic reaction with reactive extraction</atitle><jtitle>Chemical engineering science</jtitle><date>2002-06-01</date><risdate>2002</risdate><volume>57</volume><issue>11</issue><spage>1985</spage><epage>1992</epage><pages>1985-1992</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>During the enzymatic hydrolysis of the potassium salt of Penicillin-G (PenGK) into Phenylacetic acid (PAA) and potassium salt of 6-Aminopenicillanic acid (6-APA), the pH of the reaction mixture falls on account of accumulation of PAA. This lowers the stability and activity of the enzyme used, viz., Penicillin-G acylase (PGA). A new approach of extracting the PAA by a long-chain tertiary amine, which is in the dispersed phase, as a liquid ion exchanger (LIX), is presented. A mathematical model has been developed for this slurry phase reactor with PenGK in the continuous aqueous phase, the amine alongwith a diluent in the dispersed organic phase and the immobilized PGA enzyme as the solid catalyst. Effects of various parameters affecting the conversion of PenG have been discussed. The model has been solved for batch and semi-batch modes. It has been shown that the semi-batch mode yields a higher productivity. This approach can also be advantageously used for other intermediates like 7-ADCA for cephalosporins.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0009-2509(02)00079-9</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2509 |
ispartof | Chemical engineering science, 2002-06, Vol.57 (11), p.1985-1992 |
issn | 0009-2509 1873-4405 |
language | eng |
recordid | cdi_proquest_miscellaneous_27609579 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | 6-APA Amines Antibacterial agents Antibiotics. Antiinfectious agents. Antiparasitic agents Biological and medical sciences Catalysts Chemical reactors Enzymes Extraction Hydrolysis Intensification Ion exchangers Mathematical models Medical sciences Penicillin G Pharmacology. Drug treatments Reactive extraction Solutions |
title | Intensification of enzymatic hydrolysis of penicillin G: Part 2. model for enzymatic reaction with reactive extraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intensification%20of%20enzymatic%20hydrolysis%20of%20penicillin%20G:%20Part%202.%20model%20for%20enzymatic%20reaction%20with%20reactive%20extraction&rft.jtitle=Chemical%20engineering%20science&rft.au=Gaidhani,%20H.K.&rft.date=2002-06-01&rft.volume=57&rft.issue=11&rft.spage=1985&rft.epage=1992&rft.pages=1985-1992&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/S0009-2509(02)00079-9&rft_dat=%3Cproquest_cross%3E623668%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21498177&rft_id=info:pmid/&rft_els_id=S0009250902000799&rfr_iscdi=true |