Intensification of enzymatic hydrolysis of penicillin G: Part 2. model for enzymatic reaction with reactive extraction

During the enzymatic hydrolysis of the potassium salt of Penicillin-G (PenGK) into Phenylacetic acid (PAA) and potassium salt of 6-Aminopenicillanic acid (6-APA), the pH of the reaction mixture falls on account of accumulation of PAA. This lowers the stability and activity of the enzyme used, viz.,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2002-06, Vol.57 (11), p.1985-1992
Hauptverfasser: Gaidhani, H.K., Tolani, V.L., Pangarkar, K.V., Pangarkar, V.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1992
container_issue 11
container_start_page 1985
container_title Chemical engineering science
container_volume 57
creator Gaidhani, H.K.
Tolani, V.L.
Pangarkar, K.V.
Pangarkar, V.G.
description During the enzymatic hydrolysis of the potassium salt of Penicillin-G (PenGK) into Phenylacetic acid (PAA) and potassium salt of 6-Aminopenicillanic acid (6-APA), the pH of the reaction mixture falls on account of accumulation of PAA. This lowers the stability and activity of the enzyme used, viz., Penicillin-G acylase (PGA). A new approach of extracting the PAA by a long-chain tertiary amine, which is in the dispersed phase, as a liquid ion exchanger (LIX), is presented. A mathematical model has been developed for this slurry phase reactor with PenGK in the continuous aqueous phase, the amine alongwith a diluent in the dispersed organic phase and the immobilized PGA enzyme as the solid catalyst. Effects of various parameters affecting the conversion of PenG have been discussed. The model has been solved for batch and semi-batch modes. It has been shown that the semi-batch mode yields a higher productivity. This approach can also be advantageously used for other intermediates like 7-ADCA for cephalosporins.
doi_str_mv 10.1016/S0009-2509(02)00079-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27609579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250902000799</els_id><sourcerecordid>623668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-481f3e25a80eb90332c48a2aca9e18d642d73e10930fec28367b380a46222e863</originalsourceid><addsrcrecordid>eNqFkUFPGzEQha2qSE0pP6GSLyB62HRs765tLgihkiJFAgl6tox3Vhht7GAvge2vJ5tEtLecRm_8zTxrHiHfGUwZsPrnHQDoglegT4H_WAupC_2JTJiSoihLqD6TyQfyhXzN-WmEJIMJWV2HHkP2rXe29zHQ2FIMf4fFWjn6ODQpdkP2eewvMXjnu84HOjujtzb1lE_pIjbY0Tam_-YSWrfZ9ur7x51aIcW3Pm0fvpGD1nYZj3b1kPy5-nV_-buY38yuLy_mhStF3RelYq1AXlkF-KBBCO5KZbl1ViNTTV3yRgpkoAW06LgStXwQCmxZc85R1eKQnGz3LlN8fsHcm4XPDrvOBowv2XBZg66k3g-yUism5RqstqBLMeeErVkmv7BpMAzMGIfZxGHGWxvgZhOHGQ2OdwY2O9u1yQbn879hIbmuxfjj8y2H67OsPCaTncfgsPEJXW-a6Pc4vQOI0J-N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21498177</pqid></control><display><type>article</type><title>Intensification of enzymatic hydrolysis of penicillin G: Part 2. model for enzymatic reaction with reactive extraction</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Gaidhani, H.K. ; Tolani, V.L. ; Pangarkar, K.V. ; Pangarkar, V.G.</creator><creatorcontrib>Gaidhani, H.K. ; Tolani, V.L. ; Pangarkar, K.V. ; Pangarkar, V.G.</creatorcontrib><description>During the enzymatic hydrolysis of the potassium salt of Penicillin-G (PenGK) into Phenylacetic acid (PAA) and potassium salt of 6-Aminopenicillanic acid (6-APA), the pH of the reaction mixture falls on account of accumulation of PAA. This lowers the stability and activity of the enzyme used, viz., Penicillin-G acylase (PGA). A new approach of extracting the PAA by a long-chain tertiary amine, which is in the dispersed phase, as a liquid ion exchanger (LIX), is presented. A mathematical model has been developed for this slurry phase reactor with PenGK in the continuous aqueous phase, the amine alongwith a diluent in the dispersed organic phase and the immobilized PGA enzyme as the solid catalyst. Effects of various parameters affecting the conversion of PenG have been discussed. The model has been solved for batch and semi-batch modes. It has been shown that the semi-batch mode yields a higher productivity. This approach can also be advantageously used for other intermediates like 7-ADCA for cephalosporins.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/S0009-2509(02)00079-9</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>6-APA ; Amines ; Antibacterial agents ; Antibiotics. Antiinfectious agents. Antiparasitic agents ; Biological and medical sciences ; Catalysts ; Chemical reactors ; Enzymes ; Extraction ; Hydrolysis ; Intensification ; Ion exchangers ; Mathematical models ; Medical sciences ; Penicillin G ; Pharmacology. Drug treatments ; Reactive extraction ; Solutions</subject><ispartof>Chemical engineering science, 2002-06, Vol.57 (11), p.1985-1992</ispartof><rights>2002</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-481f3e25a80eb90332c48a2aca9e18d642d73e10930fec28367b380a46222e863</citedby><cites>FETCH-LOGICAL-c436t-481f3e25a80eb90332c48a2aca9e18d642d73e10930fec28367b380a46222e863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0009-2509(02)00079-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13729636$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaidhani, H.K.</creatorcontrib><creatorcontrib>Tolani, V.L.</creatorcontrib><creatorcontrib>Pangarkar, K.V.</creatorcontrib><creatorcontrib>Pangarkar, V.G.</creatorcontrib><title>Intensification of enzymatic hydrolysis of penicillin G: Part 2. model for enzymatic reaction with reactive extraction</title><title>Chemical engineering science</title><description>During the enzymatic hydrolysis of the potassium salt of Penicillin-G (PenGK) into Phenylacetic acid (PAA) and potassium salt of 6-Aminopenicillanic acid (6-APA), the pH of the reaction mixture falls on account of accumulation of PAA. This lowers the stability and activity of the enzyme used, viz., Penicillin-G acylase (PGA). A new approach of extracting the PAA by a long-chain tertiary amine, which is in the dispersed phase, as a liquid ion exchanger (LIX), is presented. A mathematical model has been developed for this slurry phase reactor with PenGK in the continuous aqueous phase, the amine alongwith a diluent in the dispersed organic phase and the immobilized PGA enzyme as the solid catalyst. Effects of various parameters affecting the conversion of PenG have been discussed. The model has been solved for batch and semi-batch modes. It has been shown that the semi-batch mode yields a higher productivity. This approach can also be advantageously used for other intermediates like 7-ADCA for cephalosporins.</description><subject>6-APA</subject><subject>Amines</subject><subject>Antibacterial agents</subject><subject>Antibiotics. Antiinfectious agents. Antiparasitic agents</subject><subject>Biological and medical sciences</subject><subject>Catalysts</subject><subject>Chemical reactors</subject><subject>Enzymes</subject><subject>Extraction</subject><subject>Hydrolysis</subject><subject>Intensification</subject><subject>Ion exchangers</subject><subject>Mathematical models</subject><subject>Medical sciences</subject><subject>Penicillin G</subject><subject>Pharmacology. Drug treatments</subject><subject>Reactive extraction</subject><subject>Solutions</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkUFPGzEQha2qSE0pP6GSLyB62HRs765tLgihkiJFAgl6tox3Vhht7GAvge2vJ5tEtLecRm_8zTxrHiHfGUwZsPrnHQDoglegT4H_WAupC_2JTJiSoihLqD6TyQfyhXzN-WmEJIMJWV2HHkP2rXe29zHQ2FIMf4fFWjn6ODQpdkP2eewvMXjnu84HOjujtzb1lE_pIjbY0Tam_-YSWrfZ9ur7x51aIcW3Pm0fvpGD1nYZj3b1kPy5-nV_-buY38yuLy_mhStF3RelYq1AXlkF-KBBCO5KZbl1ViNTTV3yRgpkoAW06LgStXwQCmxZc85R1eKQnGz3LlN8fsHcm4XPDrvOBowv2XBZg66k3g-yUism5RqstqBLMeeErVkmv7BpMAzMGIfZxGHGWxvgZhOHGQ2OdwY2O9u1yQbn879hIbmuxfjj8y2H67OsPCaTncfgsPEJXW-a6Pc4vQOI0J-N</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Gaidhani, H.K.</creator><creator>Tolani, V.L.</creator><creator>Pangarkar, K.V.</creator><creator>Pangarkar, V.G.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20020601</creationdate><title>Intensification of enzymatic hydrolysis of penicillin G: Part 2. model for enzymatic reaction with reactive extraction</title><author>Gaidhani, H.K. ; Tolani, V.L. ; Pangarkar, K.V. ; Pangarkar, V.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-481f3e25a80eb90332c48a2aca9e18d642d73e10930fec28367b380a46222e863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>6-APA</topic><topic>Amines</topic><topic>Antibacterial agents</topic><topic>Antibiotics. Antiinfectious agents. Antiparasitic agents</topic><topic>Biological and medical sciences</topic><topic>Catalysts</topic><topic>Chemical reactors</topic><topic>Enzymes</topic><topic>Extraction</topic><topic>Hydrolysis</topic><topic>Intensification</topic><topic>Ion exchangers</topic><topic>Mathematical models</topic><topic>Medical sciences</topic><topic>Penicillin G</topic><topic>Pharmacology. Drug treatments</topic><topic>Reactive extraction</topic><topic>Solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaidhani, H.K.</creatorcontrib><creatorcontrib>Tolani, V.L.</creatorcontrib><creatorcontrib>Pangarkar, K.V.</creatorcontrib><creatorcontrib>Pangarkar, V.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaidhani, H.K.</au><au>Tolani, V.L.</au><au>Pangarkar, K.V.</au><au>Pangarkar, V.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intensification of enzymatic hydrolysis of penicillin G: Part 2. model for enzymatic reaction with reactive extraction</atitle><jtitle>Chemical engineering science</jtitle><date>2002-06-01</date><risdate>2002</risdate><volume>57</volume><issue>11</issue><spage>1985</spage><epage>1992</epage><pages>1985-1992</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>During the enzymatic hydrolysis of the potassium salt of Penicillin-G (PenGK) into Phenylacetic acid (PAA) and potassium salt of 6-Aminopenicillanic acid (6-APA), the pH of the reaction mixture falls on account of accumulation of PAA. This lowers the stability and activity of the enzyme used, viz., Penicillin-G acylase (PGA). A new approach of extracting the PAA by a long-chain tertiary amine, which is in the dispersed phase, as a liquid ion exchanger (LIX), is presented. A mathematical model has been developed for this slurry phase reactor with PenGK in the continuous aqueous phase, the amine alongwith a diluent in the dispersed organic phase and the immobilized PGA enzyme as the solid catalyst. Effects of various parameters affecting the conversion of PenG have been discussed. The model has been solved for batch and semi-batch modes. It has been shown that the semi-batch mode yields a higher productivity. This approach can also be advantageously used for other intermediates like 7-ADCA for cephalosporins.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0009-2509(02)00079-9</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2002-06, Vol.57 (11), p.1985-1992
issn 0009-2509
1873-4405
language eng
recordid cdi_proquest_miscellaneous_27609579
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects 6-APA
Amines
Antibacterial agents
Antibiotics. Antiinfectious agents. Antiparasitic agents
Biological and medical sciences
Catalysts
Chemical reactors
Enzymes
Extraction
Hydrolysis
Intensification
Ion exchangers
Mathematical models
Medical sciences
Penicillin G
Pharmacology. Drug treatments
Reactive extraction
Solutions
title Intensification of enzymatic hydrolysis of penicillin G: Part 2. model for enzymatic reaction with reactive extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intensification%20of%20enzymatic%20hydrolysis%20of%20penicillin%20G:%20Part%202.%20model%20for%20enzymatic%20reaction%20with%20reactive%20extraction&rft.jtitle=Chemical%20engineering%20science&rft.au=Gaidhani,%20H.K.&rft.date=2002-06-01&rft.volume=57&rft.issue=11&rft.spage=1985&rft.epage=1992&rft.pages=1985-1992&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/S0009-2509(02)00079-9&rft_dat=%3Cproquest_cross%3E623668%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21498177&rft_id=info:pmid/&rft_els_id=S0009250902000799&rfr_iscdi=true