Multi-speed thermal lattice Boltzmann method stabilization via equilibrium under-relaxation

The lattice Boltzmann method (LBM) is extended to allow stable and consistent thermal evolution. Two multi-speed schemes are investigated; a three-speed, 34-state system that contains an artifact in the energy evolution equation and a four-speed, 52-state system that removes this artifact. A dual-ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications 2000, Vol.129 (1), p.207-226
Hauptverfasser: Teixeira, Chris, Chen, Hudong, Freed, David M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 226
container_issue 1
container_start_page 207
container_title Computer physics communications
container_volume 129
creator Teixeira, Chris
Chen, Hudong
Freed, David M.
description The lattice Boltzmann method (LBM) is extended to allow stable and consistent thermal evolution. Two multi-speed schemes are investigated; a three-speed, 34-state system that contains an artifact in the energy evolution equation and a four-speed, 52-state system that removes this artifact. A dual-rate collision operator is used in order to achieve variable Prandtl number (Pr). The schemes are tested on the decay of a sinusoidal thermal perturbation that excites only the purely decaying eigen-mode of this fully coupled system. Results over a range of transport coefficients, velocities, Pr and the allowable temperature range agree with theory for both schemes. However, under most flow conditions, the schemes eventually go unstable, a previously noted problem with multi-speed thermal models. We stabilize the scheme by identifying a temperature-dependent factor in the equilibrium function that leads directly to the removal of the Galilean-invariance artifact, and relax the requirement of instantaneous accuracy of this factor. This results in a stable scheme but introduces artificial thermal diffusion strongly dependent on the bulk velocity. Empirically, we develop a scheme to push this error to higher order. The resultant multi-speed schemes are also used to simulate Couette flow with a temperature gradient and produce results that agree well with theory.
doi_str_mv 10.1016/S0010-4655(00)00108-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27606562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465500001089</els_id><sourcerecordid>27606562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-b87904ced943b5f70356ad06d6d735dfe9032f5567051f819e92c87f6df827b73</originalsourceid><addsrcrecordid>eNqFkE9P3DAQxS1EJRboR6iUA0JwSBknsR2fUEH0jwTiAD31YDn2WGvkJIvtILqfnuwuKseeRjP6vZl5j5AvFL5SoPziAYBC2XDGzgDON01byj2yoK2QZSWbZp8s_iEH5DClJwAQQtYL8uduCtmXaYVoi7zE2OtQBJ2zN1hcjSGvez0MRY95OdoiZd354Nc6-3EoXrwu8HmaB130U19Mg8VYRgz6dQsck09Oh4Sf3-sR-f395vH6Z3l7_-PX9bfb0tRc5LKb34TGoJVN3TEnoGZcW-CWW1Ez61BCXTnGuABGXUslysq0wnHr2kp0oj4ip7u9qzg-T5iy6n0yGIIecJySqgQHzng1g2wHmjimFNGpVfS9jn8VBbWJUm2jVJucFIDaRqnkrDt5P6CT0cFFPRifPsQNUNHwGbvcYTibffEYVTIeh9mZj2iysqP_z6E3wouJDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27606562</pqid></control><display><type>article</type><title>Multi-speed thermal lattice Boltzmann method stabilization via equilibrium under-relaxation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Teixeira, Chris ; Chen, Hudong ; Freed, David M.</creator><creatorcontrib>Teixeira, Chris ; Chen, Hudong ; Freed, David M.</creatorcontrib><description>The lattice Boltzmann method (LBM) is extended to allow stable and consistent thermal evolution. Two multi-speed schemes are investigated; a three-speed, 34-state system that contains an artifact in the energy evolution equation and a four-speed, 52-state system that removes this artifact. A dual-rate collision operator is used in order to achieve variable Prandtl number (Pr). The schemes are tested on the decay of a sinusoidal thermal perturbation that excites only the purely decaying eigen-mode of this fully coupled system. Results over a range of transport coefficients, velocities, Pr and the allowable temperature range agree with theory for both schemes. However, under most flow conditions, the schemes eventually go unstable, a previously noted problem with multi-speed thermal models. We stabilize the scheme by identifying a temperature-dependent factor in the equilibrium function that leads directly to the removal of the Galilean-invariance artifact, and relax the requirement of instantaneous accuracy of this factor. This results in a stable scheme but introduces artificial thermal diffusion strongly dependent on the bulk velocity. Empirically, we develop a scheme to push this error to higher order. The resultant multi-speed schemes are also used to simulate Couette flow with a temperature gradient and produce results that agree well with theory.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/S0010-4655(00)00108-9</identifier><identifier>CODEN: CPHCBZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computational methods in fluid dynamics ; Couette flow ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Fundamentals and general ; Heat transfer ; Lattice Boltzmann ; Physics ; Physics of gases ; Physics of gases, plasmas and electric discharges ; Rheology ; Stabilization ; Thermodynamic properties, equations of state</subject><ispartof>Computer physics communications, 2000, Vol.129 (1), p.207-226</ispartof><rights>2000 Elsevier Science B.V.</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-b87904ced943b5f70356ad06d6d735dfe9032f5567051f819e92c87f6df827b73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0010-4655(00)00108-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,4024,4050,4051,23930,23931,25140,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1401746$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Teixeira, Chris</creatorcontrib><creatorcontrib>Chen, Hudong</creatorcontrib><creatorcontrib>Freed, David M.</creatorcontrib><title>Multi-speed thermal lattice Boltzmann method stabilization via equilibrium under-relaxation</title><title>Computer physics communications</title><description>The lattice Boltzmann method (LBM) is extended to allow stable and consistent thermal evolution. Two multi-speed schemes are investigated; a three-speed, 34-state system that contains an artifact in the energy evolution equation and a four-speed, 52-state system that removes this artifact. A dual-rate collision operator is used in order to achieve variable Prandtl number (Pr). The schemes are tested on the decay of a sinusoidal thermal perturbation that excites only the purely decaying eigen-mode of this fully coupled system. Results over a range of transport coefficients, velocities, Pr and the allowable temperature range agree with theory for both schemes. However, under most flow conditions, the schemes eventually go unstable, a previously noted problem with multi-speed thermal models. We stabilize the scheme by identifying a temperature-dependent factor in the equilibrium function that leads directly to the removal of the Galilean-invariance artifact, and relax the requirement of instantaneous accuracy of this factor. This results in a stable scheme but introduces artificial thermal diffusion strongly dependent on the bulk velocity. Empirically, we develop a scheme to push this error to higher order. The resultant multi-speed schemes are also used to simulate Couette flow with a temperature gradient and produce results that agree well with theory.</description><subject>Computational methods in fluid dynamics</subject><subject>Couette flow</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Fundamentals and general</subject><subject>Heat transfer</subject><subject>Lattice Boltzmann</subject><subject>Physics</subject><subject>Physics of gases</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Rheology</subject><subject>Stabilization</subject><subject>Thermodynamic properties, equations of state</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkE9P3DAQxS1EJRboR6iUA0JwSBknsR2fUEH0jwTiAD31YDn2WGvkJIvtILqfnuwuKseeRjP6vZl5j5AvFL5SoPziAYBC2XDGzgDON01byj2yoK2QZSWbZp8s_iEH5DClJwAQQtYL8uduCtmXaYVoi7zE2OtQBJ2zN1hcjSGvez0MRY95OdoiZd354Nc6-3EoXrwu8HmaB130U19Mg8VYRgz6dQsck09Oh4Sf3-sR-f395vH6Z3l7_-PX9bfb0tRc5LKb34TGoJVN3TEnoGZcW-CWW1Ez61BCXTnGuABGXUslysq0wnHr2kp0oj4ip7u9qzg-T5iy6n0yGIIecJySqgQHzng1g2wHmjimFNGpVfS9jn8VBbWJUm2jVJucFIDaRqnkrDt5P6CT0cFFPRifPsQNUNHwGbvcYTibffEYVTIeh9mZj2iysqP_z6E3wouJDg</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Teixeira, Chris</creator><creator>Chen, Hudong</creator><creator>Freed, David M.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2000</creationdate><title>Multi-speed thermal lattice Boltzmann method stabilization via equilibrium under-relaxation</title><author>Teixeira, Chris ; Chen, Hudong ; Freed, David M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-b87904ced943b5f70356ad06d6d735dfe9032f5567051f819e92c87f6df827b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Computational methods in fluid dynamics</topic><topic>Couette flow</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Fundamentals and general</topic><topic>Heat transfer</topic><topic>Lattice Boltzmann</topic><topic>Physics</topic><topic>Physics of gases</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Rheology</topic><topic>Stabilization</topic><topic>Thermodynamic properties, equations of state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teixeira, Chris</creatorcontrib><creatorcontrib>Chen, Hudong</creatorcontrib><creatorcontrib>Freed, David M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teixeira, Chris</au><au>Chen, Hudong</au><au>Freed, David M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-speed thermal lattice Boltzmann method stabilization via equilibrium under-relaxation</atitle><jtitle>Computer physics communications</jtitle><date>2000</date><risdate>2000</risdate><volume>129</volume><issue>1</issue><spage>207</spage><epage>226</epage><pages>207-226</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><coden>CPHCBZ</coden><abstract>The lattice Boltzmann method (LBM) is extended to allow stable and consistent thermal evolution. Two multi-speed schemes are investigated; a three-speed, 34-state system that contains an artifact in the energy evolution equation and a four-speed, 52-state system that removes this artifact. A dual-rate collision operator is used in order to achieve variable Prandtl number (Pr). The schemes are tested on the decay of a sinusoidal thermal perturbation that excites only the purely decaying eigen-mode of this fully coupled system. Results over a range of transport coefficients, velocities, Pr and the allowable temperature range agree with theory for both schemes. However, under most flow conditions, the schemes eventually go unstable, a previously noted problem with multi-speed thermal models. We stabilize the scheme by identifying a temperature-dependent factor in the equilibrium function that leads directly to the removal of the Galilean-invariance artifact, and relax the requirement of instantaneous accuracy of this factor. This results in a stable scheme but introduces artificial thermal diffusion strongly dependent on the bulk velocity. Empirically, we develop a scheme to push this error to higher order. The resultant multi-speed schemes are also used to simulate Couette flow with a temperature gradient and produce results that agree well with theory.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0010-4655(00)00108-9</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4655
ispartof Computer physics communications, 2000, Vol.129 (1), p.207-226
issn 0010-4655
1879-2944
language eng
recordid cdi_proquest_miscellaneous_27606562
source Access via ScienceDirect (Elsevier)
subjects Computational methods in fluid dynamics
Couette flow
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Fundamentals and general
Heat transfer
Lattice Boltzmann
Physics
Physics of gases
Physics of gases, plasmas and electric discharges
Rheology
Stabilization
Thermodynamic properties, equations of state
title Multi-speed thermal lattice Boltzmann method stabilization via equilibrium under-relaxation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-speed%20thermal%20lattice%20Boltzmann%20method%20stabilization%20via%20equilibrium%20under-relaxation&rft.jtitle=Computer%20physics%20communications&rft.au=Teixeira,%20Chris&rft.date=2000&rft.volume=129&rft.issue=1&rft.spage=207&rft.epage=226&rft.pages=207-226&rft.issn=0010-4655&rft.eissn=1879-2944&rft.coden=CPHCBZ&rft_id=info:doi/10.1016/S0010-4655(00)00108-9&rft_dat=%3Cproquest_cross%3E27606562%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27606562&rft_id=info:pmid/&rft_els_id=S0010465500001089&rfr_iscdi=true