Multi-speed thermal lattice Boltzmann method stabilization via equilibrium under-relaxation
The lattice Boltzmann method (LBM) is extended to allow stable and consistent thermal evolution. Two multi-speed schemes are investigated; a three-speed, 34-state system that contains an artifact in the energy evolution equation and a four-speed, 52-state system that removes this artifact. A dual-ra...
Gespeichert in:
Veröffentlicht in: | Computer physics communications 2000, Vol.129 (1), p.207-226 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 226 |
---|---|
container_issue | 1 |
container_start_page | 207 |
container_title | Computer physics communications |
container_volume | 129 |
creator | Teixeira, Chris Chen, Hudong Freed, David M. |
description | The lattice Boltzmann method (LBM) is extended to allow stable and consistent thermal evolution. Two multi-speed schemes are investigated; a three-speed, 34-state system that contains an artifact in the energy evolution equation and a four-speed, 52-state system that removes this artifact. A dual-rate collision operator is used in order to achieve variable Prandtl number (Pr). The schemes are tested on the decay of a sinusoidal thermal perturbation that excites only the purely decaying eigen-mode of this fully coupled system. Results over a range of transport coefficients, velocities, Pr and the allowable temperature range agree with theory for both schemes. However, under most flow conditions, the schemes eventually go unstable, a previously noted problem with multi-speed thermal models. We stabilize the scheme by identifying a temperature-dependent factor in the equilibrium function that leads directly to the removal of the Galilean-invariance artifact, and relax the requirement of instantaneous accuracy of this factor. This results in a stable scheme but introduces artificial thermal diffusion strongly dependent on the bulk velocity. Empirically, we develop a scheme to push this error to higher order. The resultant multi-speed schemes are also used to simulate Couette flow with a temperature gradient and produce results that agree well with theory. |
doi_str_mv | 10.1016/S0010-4655(00)00108-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27606562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465500001089</els_id><sourcerecordid>27606562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-b87904ced943b5f70356ad06d6d735dfe9032f5567051f819e92c87f6df827b73</originalsourceid><addsrcrecordid>eNqFkE9P3DAQxS1EJRboR6iUA0JwSBknsR2fUEH0jwTiAD31YDn2WGvkJIvtILqfnuwuKseeRjP6vZl5j5AvFL5SoPziAYBC2XDGzgDON01byj2yoK2QZSWbZp8s_iEH5DClJwAQQtYL8uduCtmXaYVoi7zE2OtQBJ2zN1hcjSGvez0MRY95OdoiZd354Nc6-3EoXrwu8HmaB130U19Mg8VYRgz6dQsck09Oh4Sf3-sR-f395vH6Z3l7_-PX9bfb0tRc5LKb34TGoJVN3TEnoGZcW-CWW1Ez61BCXTnGuABGXUslysq0wnHr2kp0oj4ip7u9qzg-T5iy6n0yGIIecJySqgQHzng1g2wHmjimFNGpVfS9jn8VBbWJUm2jVJucFIDaRqnkrDt5P6CT0cFFPRifPsQNUNHwGbvcYTibffEYVTIeh9mZj2iysqP_z6E3wouJDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27606562</pqid></control><display><type>article</type><title>Multi-speed thermal lattice Boltzmann method stabilization via equilibrium under-relaxation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Teixeira, Chris ; Chen, Hudong ; Freed, David M.</creator><creatorcontrib>Teixeira, Chris ; Chen, Hudong ; Freed, David M.</creatorcontrib><description>The lattice Boltzmann method (LBM) is extended to allow stable and consistent thermal evolution. Two multi-speed schemes are investigated; a three-speed, 34-state system that contains an artifact in the energy evolution equation and a four-speed, 52-state system that removes this artifact. A dual-rate collision operator is used in order to achieve variable Prandtl number (Pr). The schemes are tested on the decay of a sinusoidal thermal perturbation that excites only the purely decaying eigen-mode of this fully coupled system. Results over a range of transport coefficients, velocities, Pr and the allowable temperature range agree with theory for both schemes. However, under most flow conditions, the schemes eventually go unstable, a previously noted problem with multi-speed thermal models. We stabilize the scheme by identifying a temperature-dependent factor in the equilibrium function that leads directly to the removal of the Galilean-invariance artifact, and relax the requirement of instantaneous accuracy of this factor. This results in a stable scheme but introduces artificial thermal diffusion strongly dependent on the bulk velocity. Empirically, we develop a scheme to push this error to higher order. The resultant multi-speed schemes are also used to simulate Couette flow with a temperature gradient and produce results that agree well with theory.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/S0010-4655(00)00108-9</identifier><identifier>CODEN: CPHCBZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computational methods in fluid dynamics ; Couette flow ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Fundamentals and general ; Heat transfer ; Lattice Boltzmann ; Physics ; Physics of gases ; Physics of gases, plasmas and electric discharges ; Rheology ; Stabilization ; Thermodynamic properties, equations of state</subject><ispartof>Computer physics communications, 2000, Vol.129 (1), p.207-226</ispartof><rights>2000 Elsevier Science B.V.</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-b87904ced943b5f70356ad06d6d735dfe9032f5567051f819e92c87f6df827b73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0010-4655(00)00108-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,4024,4050,4051,23930,23931,25140,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1401746$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Teixeira, Chris</creatorcontrib><creatorcontrib>Chen, Hudong</creatorcontrib><creatorcontrib>Freed, David M.</creatorcontrib><title>Multi-speed thermal lattice Boltzmann method stabilization via equilibrium under-relaxation</title><title>Computer physics communications</title><description>The lattice Boltzmann method (LBM) is extended to allow stable and consistent thermal evolution. Two multi-speed schemes are investigated; a three-speed, 34-state system that contains an artifact in the energy evolution equation and a four-speed, 52-state system that removes this artifact. A dual-rate collision operator is used in order to achieve variable Prandtl number (Pr). The schemes are tested on the decay of a sinusoidal thermal perturbation that excites only the purely decaying eigen-mode of this fully coupled system. Results over a range of transport coefficients, velocities, Pr and the allowable temperature range agree with theory for both schemes. However, under most flow conditions, the schemes eventually go unstable, a previously noted problem with multi-speed thermal models. We stabilize the scheme by identifying a temperature-dependent factor in the equilibrium function that leads directly to the removal of the Galilean-invariance artifact, and relax the requirement of instantaneous accuracy of this factor. This results in a stable scheme but introduces artificial thermal diffusion strongly dependent on the bulk velocity. Empirically, we develop a scheme to push this error to higher order. The resultant multi-speed schemes are also used to simulate Couette flow with a temperature gradient and produce results that agree well with theory.</description><subject>Computational methods in fluid dynamics</subject><subject>Couette flow</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Fundamentals and general</subject><subject>Heat transfer</subject><subject>Lattice Boltzmann</subject><subject>Physics</subject><subject>Physics of gases</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Rheology</subject><subject>Stabilization</subject><subject>Thermodynamic properties, equations of state</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkE9P3DAQxS1EJRboR6iUA0JwSBknsR2fUEH0jwTiAD31YDn2WGvkJIvtILqfnuwuKseeRjP6vZl5j5AvFL5SoPziAYBC2XDGzgDON01byj2yoK2QZSWbZp8s_iEH5DClJwAQQtYL8uduCtmXaYVoi7zE2OtQBJ2zN1hcjSGvez0MRY95OdoiZd354Nc6-3EoXrwu8HmaB130U19Mg8VYRgz6dQsck09Oh4Sf3-sR-f395vH6Z3l7_-PX9bfb0tRc5LKb34TGoJVN3TEnoGZcW-CWW1Ez61BCXTnGuABGXUslysq0wnHr2kp0oj4ip7u9qzg-T5iy6n0yGIIecJySqgQHzng1g2wHmjimFNGpVfS9jn8VBbWJUm2jVJucFIDaRqnkrDt5P6CT0cFFPRifPsQNUNHwGbvcYTibffEYVTIeh9mZj2iysqP_z6E3wouJDg</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Teixeira, Chris</creator><creator>Chen, Hudong</creator><creator>Freed, David M.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2000</creationdate><title>Multi-speed thermal lattice Boltzmann method stabilization via equilibrium under-relaxation</title><author>Teixeira, Chris ; Chen, Hudong ; Freed, David M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-b87904ced943b5f70356ad06d6d735dfe9032f5567051f819e92c87f6df827b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Computational methods in fluid dynamics</topic><topic>Couette flow</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Fundamentals and general</topic><topic>Heat transfer</topic><topic>Lattice Boltzmann</topic><topic>Physics</topic><topic>Physics of gases</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Rheology</topic><topic>Stabilization</topic><topic>Thermodynamic properties, equations of state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teixeira, Chris</creatorcontrib><creatorcontrib>Chen, Hudong</creatorcontrib><creatorcontrib>Freed, David M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teixeira, Chris</au><au>Chen, Hudong</au><au>Freed, David M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-speed thermal lattice Boltzmann method stabilization via equilibrium under-relaxation</atitle><jtitle>Computer physics communications</jtitle><date>2000</date><risdate>2000</risdate><volume>129</volume><issue>1</issue><spage>207</spage><epage>226</epage><pages>207-226</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><coden>CPHCBZ</coden><abstract>The lattice Boltzmann method (LBM) is extended to allow stable and consistent thermal evolution. Two multi-speed schemes are investigated; a three-speed, 34-state system that contains an artifact in the energy evolution equation and a four-speed, 52-state system that removes this artifact. A dual-rate collision operator is used in order to achieve variable Prandtl number (Pr). The schemes are tested on the decay of a sinusoidal thermal perturbation that excites only the purely decaying eigen-mode of this fully coupled system. Results over a range of transport coefficients, velocities, Pr and the allowable temperature range agree with theory for both schemes. However, under most flow conditions, the schemes eventually go unstable, a previously noted problem with multi-speed thermal models. We stabilize the scheme by identifying a temperature-dependent factor in the equilibrium function that leads directly to the removal of the Galilean-invariance artifact, and relax the requirement of instantaneous accuracy of this factor. This results in a stable scheme but introduces artificial thermal diffusion strongly dependent on the bulk velocity. Empirically, we develop a scheme to push this error to higher order. The resultant multi-speed schemes are also used to simulate Couette flow with a temperature gradient and produce results that agree well with theory.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0010-4655(00)00108-9</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4655 |
ispartof | Computer physics communications, 2000, Vol.129 (1), p.207-226 |
issn | 0010-4655 1879-2944 |
language | eng |
recordid | cdi_proquest_miscellaneous_27606562 |
source | Access via ScienceDirect (Elsevier) |
subjects | Computational methods in fluid dynamics Couette flow Cross-disciplinary physics: materials science rheology Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Fundamentals and general Heat transfer Lattice Boltzmann Physics Physics of gases Physics of gases, plasmas and electric discharges Rheology Stabilization Thermodynamic properties, equations of state |
title | Multi-speed thermal lattice Boltzmann method stabilization via equilibrium under-relaxation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-speed%20thermal%20lattice%20Boltzmann%20method%20stabilization%20via%20equilibrium%20under-relaxation&rft.jtitle=Computer%20physics%20communications&rft.au=Teixeira,%20Chris&rft.date=2000&rft.volume=129&rft.issue=1&rft.spage=207&rft.epage=226&rft.pages=207-226&rft.issn=0010-4655&rft.eissn=1879-2944&rft.coden=CPHCBZ&rft_id=info:doi/10.1016/S0010-4655(00)00108-9&rft_dat=%3Cproquest_cross%3E27606562%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27606562&rft_id=info:pmid/&rft_els_id=S0010465500001089&rfr_iscdi=true |