Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes

Organic light-emitting diodes (OLEDs) represent a promising technology for large, flexible, lightweight, flat-panel displays 1 , 2 , 3 . Such devices consist of one or several semiconducting organic layer(s) sandwiched between two electrodes. When an electric field is applied, electrons are injected...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2000-06, Vol.405 (6787), p.661-665
Hauptverfasser: Gross, Markus, Müller, David C., Nothofer, Heinz-Georg, Scherf, Ulrich, Neher, Dieter, Bräuchle, Christoph, Meerholz, Klaus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 665
container_issue 6787
container_start_page 661
container_title Nature (London)
container_volume 405
creator Gross, Markus
Müller, David C.
Nothofer, Heinz-Georg
Scherf, Ulrich
Neher, Dieter
Bräuchle, Christoph
Meerholz, Klaus
description Organic light-emitting diodes (OLEDs) represent a promising technology for large, flexible, lightweight, flat-panel displays 1 , 2 , 3 . Such devices consist of one or several semiconducting organic layer(s) sandwiched between two electrodes. When an electric field is applied, electrons are injected by the cathode into the lowest unoccupied molecular orbital of the adjacent molecules (simultaneously, holes are injected by the anode into the highest occupied molecular orbital). The two types of carriers migrate towards each other and a fraction of them recombine to form excitons, some of which decay radiatively to the ground state by spontaneous emission. Doped π-conjugated polymer layers improve the injection of holes in OLED devices 4 , 5 , 6 , 7 , 8 , 9 ; this is thought to result from the more favourable work function of these injection layers compared with the more commonly used layer material (indium tin oxide). Here we demonstrate that by increasing the doping level of such polymers, the barrier to hole injection can be continuously reduced. The use of combinatorial devices allows us to quickly screen for the optimum doping level. We apply this concept in OLED devices with hole-limited electroluminescence (such as polyfluorene-based systems 10 , 11 , 12 ), finding that it is possible to significantly reduce the operating voltage while improving the light output and efficiency.
doi_str_mv 10.1038/35015037
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_27606420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A188111248</galeid><sourcerecordid>A188111248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-db9a40c2bdd33a8f8219e7b1b2b738a86ecd0104a533affc42d5961bdb0a803c3</originalsourceid><addsrcrecordid>eNp90t2K1DAUB_Aiiruugk8gxQVRpGu-mqSXw-DHwKKgK16WNDntZmiTbtKKe-cb-kpmmNGd0VVyUdLz67-cw8myxxidYUTlK1oiXCIq7mTHmAleMC7F3ewYISILJCk_yh7EuEYIlViw-9kRRpIziuVx1qyGMfiv1nX5dAn5CKH1YVBOQ-7b3PgRTP7je6G9W8-dmtJt9P31ACHmCeZzhNy63IdOOavz3naXUwGDnaZNorHeQHyY3WtVH-HR7nmSfX7z-mL5rjj_8Ha1XJwXuhRiKkxTKYY0aYyhVMlWElyBaHBDGkGlkhy0QRgxVaZy22pGTFlx3JgGKYmopifZs21uauhqhjjVg40a-l458HOsieCIM4ISfP5fiGVZUSJ5JRN9-gdd-zm41EZNEGOSi2qTV2xRp3qorWv9FJTuwEFQvXfQ2vR6gaXEGBO2F3rg9Wiv6n10dgtKx6Tx6ltTXxx8kMwE36ZOzTHWq08fD-3Lf9vFxZfl-0O9m5cOPsYAbT0GO6hwXWNUb_av_rV_iT7ZzWtuBjB7cLtwCZzugIpa9W1Iq2bjbycqQRi96SWmgusg3Iz9r1_-BNu_6nk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204486790</pqid></control><display><type>article</type><title>Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Gross, Markus ; Müller, David C. ; Nothofer, Heinz-Georg ; Scherf, Ulrich ; Neher, Dieter ; Bräuchle, Christoph ; Meerholz, Klaus</creator><creatorcontrib>Gross, Markus ; Müller, David C. ; Nothofer, Heinz-Georg ; Scherf, Ulrich ; Neher, Dieter ; Bräuchle, Christoph ; Meerholz, Klaus</creatorcontrib><description>Organic light-emitting diodes (OLEDs) represent a promising technology for large, flexible, lightweight, flat-panel displays 1 , 2 , 3 . Such devices consist of one or several semiconducting organic layer(s) sandwiched between two electrodes. When an electric field is applied, electrons are injected by the cathode into the lowest unoccupied molecular orbital of the adjacent molecules (simultaneously, holes are injected by the anode into the highest occupied molecular orbital). The two types of carriers migrate towards each other and a fraction of them recombine to form excitons, some of which decay radiatively to the ground state by spontaneous emission. Doped π-conjugated polymer layers improve the injection of holes in OLED devices 4 , 5 , 6 , 7 , 8 , 9 ; this is thought to result from the more favourable work function of these injection layers compared with the more commonly used layer material (indium tin oxide). Here we demonstrate that by increasing the doping level of such polymers, the barrier to hole injection can be continuously reduced. The use of combinatorial devices allows us to quickly screen for the optimum doping level. We apply this concept in OLED devices with hole-limited electroluminescence (such as polyfluorene-based systems 10 , 11 , 12 ), finding that it is possible to significantly reduce the operating voltage while improving the light output and efficiency.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/35015037</identifier><identifier>PMID: 10864318</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Applied sciences ; Diodes ; Electrodes ; Electronics ; Electrons ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Humanities and Social Sciences ; Injection ; letter ; Light-emitting devices ; multidisciplinary ; Optical materials ; Optics ; Optoelectronic devices ; Physics ; Polymers ; Polymers and organics ; Science ; Science (multidisciplinary) ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>Nature (London), 2000-06, Vol.405 (6787), p.661-665</ispartof><rights>Macmillan Magazines Ltd. 2000</rights><rights>2001 INIST-CNRS</rights><rights>COPYRIGHT 2000 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Jun 8, 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-db9a40c2bdd33a8f8219e7b1b2b738a86ecd0104a533affc42d5961bdb0a803c3</citedby><cites>FETCH-LOGICAL-c577t-db9a40c2bdd33a8f8219e7b1b2b738a86ecd0104a533affc42d5961bdb0a803c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/35015037$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/35015037$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=797243$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10864318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gross, Markus</creatorcontrib><creatorcontrib>Müller, David C.</creatorcontrib><creatorcontrib>Nothofer, Heinz-Georg</creatorcontrib><creatorcontrib>Scherf, Ulrich</creatorcontrib><creatorcontrib>Neher, Dieter</creatorcontrib><creatorcontrib>Bräuchle, Christoph</creatorcontrib><creatorcontrib>Meerholz, Klaus</creatorcontrib><title>Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Organic light-emitting diodes (OLEDs) represent a promising technology for large, flexible, lightweight, flat-panel displays 1 , 2 , 3 . Such devices consist of one or several semiconducting organic layer(s) sandwiched between two electrodes. When an electric field is applied, electrons are injected by the cathode into the lowest unoccupied molecular orbital of the adjacent molecules (simultaneously, holes are injected by the anode into the highest occupied molecular orbital). The two types of carriers migrate towards each other and a fraction of them recombine to form excitons, some of which decay radiatively to the ground state by spontaneous emission. Doped π-conjugated polymer layers improve the injection of holes in OLED devices 4 , 5 , 6 , 7 , 8 , 9 ; this is thought to result from the more favourable work function of these injection layers compared with the more commonly used layer material (indium tin oxide). Here we demonstrate that by increasing the doping level of such polymers, the barrier to hole injection can be continuously reduced. The use of combinatorial devices allows us to quickly screen for the optimum doping level. We apply this concept in OLED devices with hole-limited electroluminescence (such as polyfluorene-based systems 10 , 11 , 12 ), finding that it is possible to significantly reduce the operating voltage while improving the light output and efficiency.</description><subject>Applied sciences</subject><subject>Diodes</subject><subject>Electrodes</subject><subject>Electronics</subject><subject>Electrons</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Humanities and Social Sciences</subject><subject>Injection</subject><subject>letter</subject><subject>Light-emitting devices</subject><subject>multidisciplinary</subject><subject>Optical materials</subject><subject>Optics</subject><subject>Optoelectronic devices</subject><subject>Physics</subject><subject>Polymers</subject><subject>Polymers and organics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90t2K1DAUB_Aiiruugk8gxQVRpGu-mqSXw-DHwKKgK16WNDntZmiTbtKKe-cb-kpmmNGd0VVyUdLz67-cw8myxxidYUTlK1oiXCIq7mTHmAleMC7F3ewYISILJCk_yh7EuEYIlViw-9kRRpIziuVx1qyGMfiv1nX5dAn5CKH1YVBOQ-7b3PgRTP7je6G9W8-dmtJt9P31ACHmCeZzhNy63IdOOavz3naXUwGDnaZNorHeQHyY3WtVH-HR7nmSfX7z-mL5rjj_8Ha1XJwXuhRiKkxTKYY0aYyhVMlWElyBaHBDGkGlkhy0QRgxVaZy22pGTFlx3JgGKYmopifZs21uauhqhjjVg40a-l458HOsieCIM4ISfP5fiGVZUSJ5JRN9-gdd-zm41EZNEGOSi2qTV2xRp3qorWv9FJTuwEFQvXfQ2vR6gaXEGBO2F3rg9Wiv6n10dgtKx6Tx6ltTXxx8kMwE36ZOzTHWq08fD-3Lf9vFxZfl-0O9m5cOPsYAbT0GO6hwXWNUb_av_rV_iT7ZzWtuBjB7cLtwCZzugIpa9W1Iq2bjbycqQRi96SWmgusg3Iz9r1_-BNu_6nk</recordid><startdate>20000608</startdate><enddate>20000608</enddate><creator>Gross, Markus</creator><creator>Müller, David C.</creator><creator>Nothofer, Heinz-Georg</creator><creator>Scherf, Ulrich</creator><creator>Neher, Dieter</creator><creator>Bräuchle, Christoph</creator><creator>Meerholz, Klaus</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20000608</creationdate><title>Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes</title><author>Gross, Markus ; Müller, David C. ; Nothofer, Heinz-Georg ; Scherf, Ulrich ; Neher, Dieter ; Bräuchle, Christoph ; Meerholz, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-db9a40c2bdd33a8f8219e7b1b2b738a86ecd0104a533affc42d5961bdb0a803c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Diodes</topic><topic>Electrodes</topic><topic>Electronics</topic><topic>Electrons</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Humanities and Social Sciences</topic><topic>Injection</topic><topic>letter</topic><topic>Light-emitting devices</topic><topic>multidisciplinary</topic><topic>Optical materials</topic><topic>Optics</topic><topic>Optoelectronic devices</topic><topic>Physics</topic><topic>Polymers</topic><topic>Polymers and organics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gross, Markus</creatorcontrib><creatorcontrib>Müller, David C.</creatorcontrib><creatorcontrib>Nothofer, Heinz-Georg</creatorcontrib><creatorcontrib>Scherf, Ulrich</creatorcontrib><creatorcontrib>Neher, Dieter</creatorcontrib><creatorcontrib>Bräuchle, Christoph</creatorcontrib><creatorcontrib>Meerholz, Klaus</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gross, Markus</au><au>Müller, David C.</au><au>Nothofer, Heinz-Georg</au><au>Scherf, Ulrich</au><au>Neher, Dieter</au><au>Bräuchle, Christoph</au><au>Meerholz, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2000-06-08</date><risdate>2000</risdate><volume>405</volume><issue>6787</issue><spage>661</spage><epage>665</epage><pages>661-665</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Organic light-emitting diodes (OLEDs) represent a promising technology for large, flexible, lightweight, flat-panel displays 1 , 2 , 3 . Such devices consist of one or several semiconducting organic layer(s) sandwiched between two electrodes. When an electric field is applied, electrons are injected by the cathode into the lowest unoccupied molecular orbital of the adjacent molecules (simultaneously, holes are injected by the anode into the highest occupied molecular orbital). The two types of carriers migrate towards each other and a fraction of them recombine to form excitons, some of which decay radiatively to the ground state by spontaneous emission. Doped π-conjugated polymer layers improve the injection of holes in OLED devices 4 , 5 , 6 , 7 , 8 , 9 ; this is thought to result from the more favourable work function of these injection layers compared with the more commonly used layer material (indium tin oxide). Here we demonstrate that by increasing the doping level of such polymers, the barrier to hole injection can be continuously reduced. The use of combinatorial devices allows us to quickly screen for the optimum doping level. We apply this concept in OLED devices with hole-limited electroluminescence (such as polyfluorene-based systems 10 , 11 , 12 ), finding that it is possible to significantly reduce the operating voltage while improving the light output and efficiency.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>10864318</pmid><doi>10.1038/35015037</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2000-06, Vol.405 (6787), p.661-665
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_27606420
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects Applied sciences
Diodes
Electrodes
Electronics
Electrons
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Humanities and Social Sciences
Injection
letter
Light-emitting devices
multidisciplinary
Optical materials
Optics
Optoelectronic devices
Physics
Polymers
Polymers and organics
Science
Science (multidisciplinary)
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
title Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A48%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20performance%20of%20doped%20%CF%80-conjugated%20polymers%20for%20use%20in%20organic%20light-emitting%20diodes&rft.jtitle=Nature%20(London)&rft.au=Gross,%20Markus&rft.date=2000-06-08&rft.volume=405&rft.issue=6787&rft.spage=661&rft.epage=665&rft.pages=661-665&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/35015037&rft_dat=%3Cgale_proqu%3EA188111248%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204486790&rft_id=info:pmid/10864318&rft_galeid=A188111248&rfr_iscdi=true