Untangling product selectivity on clean low index rutile TiO2 surfaces using first-principles calculations
Computational modeling of metal oxide surfaces provides an important tool to help untangle complex spectroscopy and measured catalytic reactivity. There are many material properties that make rational catalytic design challenging, and computational methods provide a way to evaluate possible structur...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2023-01, Vol.25 (3), p.2203-2211 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2211 |
---|---|
container_issue | 3 |
container_start_page | 2203 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 25 |
creator | Anum Shahid Malik Fredin, Lisa A |
description | Computational modeling of metal oxide surfaces provides an important tool to help untangle complex spectroscopy and measured catalytic reactivity. There are many material properties that make rational catalytic design challenging, and computational methods provide a way to evaluate possible structural factors, like surface structure, individually. The mechanism of water oxidation or oxygen evolution is well studied on some anatase surfaces and the rutile TiO2 (110) surface but has not yet been mapped on other low-index Miller rutile surfaces that are present in most experimental nano-titania catalysts. Here first principles calculations provide new insights into water oxidation mechanisms and reactivity of the most common low-index Miller facets of rutile TiO2. The reactivity of three surfaces, (101), (010), and (001), are explored for the first time and the product selectivity of multistep electron transfer on each surface is compared to the well-studied (110) surface. Density functional theory shows that a peroxo, O(p), intermediate is more favorable for water oxidation on all facets. The ·OH radical formation is favored on the (001) facet resulting in a high overpotential for oxygen evolution reaction (OER). The (101) and (110) facets have low overpotentials, ∼0.3 V, and favor two-electron proton-coupled electron transfer to produce H2O2. The only facet that prefers direct OER is (001), leading to O2 evolution in a four-electron process with an overpotential of 0.53 V. A volcano plot predicts the selectivity and activity of low-index Miller facets of rutile TiO2, revealing the high activity of the peroxo OER mechanism on the (010) facet. |
doi_str_mv | 10.1039/d2cp04939b |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2760548946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766412926</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-86e8926d39c2cdb395454e0faeef61374602ae8d86e41f086b3a5cca1f8446ff3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKsXf0HAi5fVfG2aHKVoFQq9tOeSZiclJWbXTeLHvzdF8eBphuHh5ZkXoWtK7ijh-r5jdiBCc707QRMqJG80UeL0b5_Jc3SR0oEQQlvKJ-iwidnEffBxj4ex74rNOEEAm_27z1-4j9gGMBGH_gP72MEnHkv2AfDarxhOZXTGQsIlHROcH1NuhtFH64dQz9YEW4LJvo_pEp05ExJc_c4p2jw9rufPzXK1eJk_LJuhSuZGSVCayY5ry2y347oVrQDiDICTlM-EJMyA6ionqCNK7rhprTXUKSGkc3yKbn9y6z9vBVLevvpkIQQToS9py2aStELp2sgU3fxDD30ZY7U7UlJQVk34N4mQaVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766412926</pqid></control><display><type>article</type><title>Untangling product selectivity on clean low index rutile TiO2 surfaces using first-principles calculations</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Anum Shahid Malik ; Fredin, Lisa A</creator><creatorcontrib>Anum Shahid Malik ; Fredin, Lisa A</creatorcontrib><description>Computational modeling of metal oxide surfaces provides an important tool to help untangle complex spectroscopy and measured catalytic reactivity. There are many material properties that make rational catalytic design challenging, and computational methods provide a way to evaluate possible structural factors, like surface structure, individually. The mechanism of water oxidation or oxygen evolution is well studied on some anatase surfaces and the rutile TiO2 (110) surface but has not yet been mapped on other low-index Miller rutile surfaces that are present in most experimental nano-titania catalysts. Here first principles calculations provide new insights into water oxidation mechanisms and reactivity of the most common low-index Miller facets of rutile TiO2. The reactivity of three surfaces, (101), (010), and (001), are explored for the first time and the product selectivity of multistep electron transfer on each surface is compared to the well-studied (110) surface. Density functional theory shows that a peroxo, O(p), intermediate is more favorable for water oxidation on all facets. The ·OH radical formation is favored on the (001) facet resulting in a high overpotential for oxygen evolution reaction (OER). The (101) and (110) facets have low overpotentials, ∼0.3 V, and favor two-electron proton-coupled electron transfer to produce H2O2. The only facet that prefers direct OER is (001), leading to O2 evolution in a four-electron process with an overpotential of 0.53 V. A volcano plot predicts the selectivity and activity of low-index Miller facets of rutile TiO2, revealing the high activity of the peroxo OER mechanism on the (010) facet.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d2cp04939b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anatase ; Density functional theory ; Electron transfer ; First principles ; Hydrogen peroxide ; Material properties ; Metal oxides ; Oxidation ; Oxygen evolution reactions ; Reactivity ; Rutile ; Selectivity ; Surface structure ; Titanium dioxide</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-01, Vol.25 (3), p.2203-2211</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Anum Shahid Malik</creatorcontrib><creatorcontrib>Fredin, Lisa A</creatorcontrib><title>Untangling product selectivity on clean low index rutile TiO2 surfaces using first-principles calculations</title><title>Physical chemistry chemical physics : PCCP</title><description>Computational modeling of metal oxide surfaces provides an important tool to help untangle complex spectroscopy and measured catalytic reactivity. There are many material properties that make rational catalytic design challenging, and computational methods provide a way to evaluate possible structural factors, like surface structure, individually. The mechanism of water oxidation or oxygen evolution is well studied on some anatase surfaces and the rutile TiO2 (110) surface but has not yet been mapped on other low-index Miller rutile surfaces that are present in most experimental nano-titania catalysts. Here first principles calculations provide new insights into water oxidation mechanisms and reactivity of the most common low-index Miller facets of rutile TiO2. The reactivity of three surfaces, (101), (010), and (001), are explored for the first time and the product selectivity of multistep electron transfer on each surface is compared to the well-studied (110) surface. Density functional theory shows that a peroxo, O(p), intermediate is more favorable for water oxidation on all facets. The ·OH radical formation is favored on the (001) facet resulting in a high overpotential for oxygen evolution reaction (OER). The (101) and (110) facets have low overpotentials, ∼0.3 V, and favor two-electron proton-coupled electron transfer to produce H2O2. The only facet that prefers direct OER is (001), leading to O2 evolution in a four-electron process with an overpotential of 0.53 V. A volcano plot predicts the selectivity and activity of low-index Miller facets of rutile TiO2, revealing the high activity of the peroxo OER mechanism on the (010) facet.</description><subject>Anatase</subject><subject>Density functional theory</subject><subject>Electron transfer</subject><subject>First principles</subject><subject>Hydrogen peroxide</subject><subject>Material properties</subject><subject>Metal oxides</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Reactivity</subject><subject>Rutile</subject><subject>Selectivity</subject><subject>Surface structure</subject><subject>Titanium dioxide</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWKsXf0HAi5fVfG2aHKVoFQq9tOeSZiclJWbXTeLHvzdF8eBphuHh5ZkXoWtK7ijh-r5jdiBCc707QRMqJG80UeL0b5_Jc3SR0oEQQlvKJ-iwidnEffBxj4ex74rNOEEAm_27z1-4j9gGMBGH_gP72MEnHkv2AfDarxhOZXTGQsIlHROcH1NuhtFH64dQz9YEW4LJvo_pEp05ExJc_c4p2jw9rufPzXK1eJk_LJuhSuZGSVCayY5ry2y347oVrQDiDICTlM-EJMyA6ionqCNK7rhprTXUKSGkc3yKbn9y6z9vBVLevvpkIQQToS9py2aStELp2sgU3fxDD30ZY7U7UlJQVk34N4mQaVA</recordid><startdate>20230118</startdate><enddate>20230118</enddate><creator>Anum Shahid Malik</creator><creator>Fredin, Lisa A</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20230118</creationdate><title>Untangling product selectivity on clean low index rutile TiO2 surfaces using first-principles calculations</title><author>Anum Shahid Malik ; Fredin, Lisa A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-86e8926d39c2cdb395454e0faeef61374602ae8d86e41f086b3a5cca1f8446ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anatase</topic><topic>Density functional theory</topic><topic>Electron transfer</topic><topic>First principles</topic><topic>Hydrogen peroxide</topic><topic>Material properties</topic><topic>Metal oxides</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Reactivity</topic><topic>Rutile</topic><topic>Selectivity</topic><topic>Surface structure</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anum Shahid Malik</creatorcontrib><creatorcontrib>Fredin, Lisa A</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anum Shahid Malik</au><au>Fredin, Lisa A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Untangling product selectivity on clean low index rutile TiO2 surfaces using first-principles calculations</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-01-18</date><risdate>2023</risdate><volume>25</volume><issue>3</issue><spage>2203</spage><epage>2211</epage><pages>2203-2211</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Computational modeling of metal oxide surfaces provides an important tool to help untangle complex spectroscopy and measured catalytic reactivity. There are many material properties that make rational catalytic design challenging, and computational methods provide a way to evaluate possible structural factors, like surface structure, individually. The mechanism of water oxidation or oxygen evolution is well studied on some anatase surfaces and the rutile TiO2 (110) surface but has not yet been mapped on other low-index Miller rutile surfaces that are present in most experimental nano-titania catalysts. Here first principles calculations provide new insights into water oxidation mechanisms and reactivity of the most common low-index Miller facets of rutile TiO2. The reactivity of three surfaces, (101), (010), and (001), are explored for the first time and the product selectivity of multistep electron transfer on each surface is compared to the well-studied (110) surface. Density functional theory shows that a peroxo, O(p), intermediate is more favorable for water oxidation on all facets. The ·OH radical formation is favored on the (001) facet resulting in a high overpotential for oxygen evolution reaction (OER). The (101) and (110) facets have low overpotentials, ∼0.3 V, and favor two-electron proton-coupled electron transfer to produce H2O2. The only facet that prefers direct OER is (001), leading to O2 evolution in a four-electron process with an overpotential of 0.53 V. A volcano plot predicts the selectivity and activity of low-index Miller facets of rutile TiO2, revealing the high activity of the peroxo OER mechanism on the (010) facet.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2cp04939b</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2023-01, Vol.25 (3), p.2203-2211 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2760548946 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Anatase Density functional theory Electron transfer First principles Hydrogen peroxide Material properties Metal oxides Oxidation Oxygen evolution reactions Reactivity Rutile Selectivity Surface structure Titanium dioxide |
title | Untangling product selectivity on clean low index rutile TiO2 surfaces using first-principles calculations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Untangling%20product%20selectivity%20on%20clean%20low%20index%20rutile%20TiO2%20surfaces%20using%20first-principles%20calculations&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Anum%20Shahid%20Malik&rft.date=2023-01-18&rft.volume=25&rft.issue=3&rft.spage=2203&rft.epage=2211&rft.pages=2203-2211&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d2cp04939b&rft_dat=%3Cproquest%3E2766412926%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766412926&rft_id=info:pmid/&rfr_iscdi=true |