A comprehensive review of optical diffusers: progress and prospects
Optical diffusers made of polymer composite materials are vital for many photonic and optoelectronic applictions such as backlight unit (BLU) in liquid crystal displays (LCDs), light extraction unit of organic light emitting diodes (OLEDs), and solar cells. We have described the types of optical dif...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2023-01, Vol.15 (4), p.1484-1492 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1492 |
---|---|
container_issue | 4 |
container_start_page | 1484 |
container_title | Nanoscale |
container_volume | 15 |
creator | Zhou, Le Liu, Sijie Zhong, Tingjun |
description | Optical diffusers made of polymer composite materials are vital for many photonic and optoelectronic applictions such as backlight unit (BLU) in liquid crystal displays (LCDs), light extraction unit of organic light emitting diodes (OLEDs), and solar cells. We have described the types of optical diffusers, the theory and measurement of light scattering, some common approaches for fabricating optical diffusers, the potential applications and recent developments of optical diffusers containing optical physical unclonable functions (PUFs), optical random number generators, passive stretchable radiative coolers, diffuser -based deep neural networks, lensless cameras or imaging systems, and three dimensinonal (3D) displays including two dimensional (2D)/3D switchable displays, which provide effective ways for designing high-performance optical films in the applications of optical devices. To satisfy the requirements for applications in stretchable optoelectronics and optomechanics, tunable optical diffusers stimulated by electric field, heat, light, mechanical field, or ultrasound attract much attention. Polymer/liquid crystal (LC) composite films with tunable light transmittance, haze, and diffusing intensity have been firstly provided and set a great foundation for the next generation of flexible and switchable optical diffusers.
This review summarizes the main types, processing methods, and applications of optical diffusers in LCDs, LED lighting, OLEDs, and solar cells. The tunable ones accelerate their applications in flexible opto-electronic, holographic, or 3D displays. |
doi_str_mv | 10.1039/d2nr04579f |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2760548894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770006560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-b3922a89768554a6e8d53b7954e48bfaa5d779639f6c99d8aa8d3ccddb193d63</originalsourceid><addsrcrecordid>eNpd0c9LwzAUB_AgipvTi3el4EWEadr89jamU2EoyO4lTV61o79M2on_vZmbEzwlIR9e3vsGodMYX8eYqBub1A5TJlS-h4YJpnhMiEj2d3tOB-jI-yXGXBFODtGAcKaokHKIppPINFXr4B1qX6wgcrAq4DNq8qhpu8LoMrJFnvcenL-NWte8OfA-0rVdH3wLpvPH6CDXpYeT7TpCi9n9Yvo4nr88PE0n87EJ_XTjjKgk0VIJLhmjmoO0jGRCMQpUZrnWzAqhOFE5N0pZqbW0xBhrs1gRy8kIXW7Khoc_evBdWhXeQFnqGprep4ngmFEpFQ304h9dNr2rQ3NBCRyCYBwHdbVRJkziHeRp64pKu680xuk62fQueX79SXYW8Pm2ZJ9VYHf0N8oAzjbAebO7_fsa8g0_5nzy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770006560</pqid></control><display><type>article</type><title>A comprehensive review of optical diffusers: progress and prospects</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zhou, Le ; Liu, Sijie ; Zhong, Tingjun</creator><creatorcontrib>Zhou, Le ; Liu, Sijie ; Zhong, Tingjun</creatorcontrib><description>Optical diffusers made of polymer composite materials are vital for many photonic and optoelectronic applictions such as backlight unit (BLU) in liquid crystal displays (LCDs), light extraction unit of organic light emitting diodes (OLEDs), and solar cells. We have described the types of optical diffusers, the theory and measurement of light scattering, some common approaches for fabricating optical diffusers, the potential applications and recent developments of optical diffusers containing optical physical unclonable functions (PUFs), optical random number generators, passive stretchable radiative coolers, diffuser -based deep neural networks, lensless cameras or imaging systems, and three dimensinonal (3D) displays including two dimensional (2D)/3D switchable displays, which provide effective ways for designing high-performance optical films in the applications of optical devices. To satisfy the requirements for applications in stretchable optoelectronics and optomechanics, tunable optical diffusers stimulated by electric field, heat, light, mechanical field, or ultrasound attract much attention. Polymer/liquid crystal (LC) composite films with tunable light transmittance, haze, and diffusing intensity have been firstly provided and set a great foundation for the next generation of flexible and switchable optical diffusers.
This review summarizes the main types, processing methods, and applications of optical diffusers in LCDs, LED lighting, OLEDs, and solar cells. The tunable ones accelerate their applications in flexible opto-electronic, holographic, or 3D displays.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d2nr04579f</identifier><identifier>PMID: 36594788</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Artificial neural networks ; Backlights ; Composite materials ; Coolers ; Diffusers ; Electric fields ; Haze ; Light transmittance ; Liquid crystal displays ; Luminous intensity ; Opto-mechanics ; Optoelectronics ; Organic light emitting diodes ; Photonic crystals ; Photovoltaic cells ; Polymer matrix composites ; Polymers ; Random numbers ; Solar cells ; Thin films</subject><ispartof>Nanoscale, 2023-01, Vol.15 (4), p.1484-1492</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-b3922a89768554a6e8d53b7954e48bfaa5d779639f6c99d8aa8d3ccddb193d63</citedby><cites>FETCH-LOGICAL-c337t-b3922a89768554a6e8d53b7954e48bfaa5d779639f6c99d8aa8d3ccddb193d63</cites><orcidid>0000-0001-7697-7369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36594788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Le</creatorcontrib><creatorcontrib>Liu, Sijie</creatorcontrib><creatorcontrib>Zhong, Tingjun</creatorcontrib><title>A comprehensive review of optical diffusers: progress and prospects</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Optical diffusers made of polymer composite materials are vital for many photonic and optoelectronic applictions such as backlight unit (BLU) in liquid crystal displays (LCDs), light extraction unit of organic light emitting diodes (OLEDs), and solar cells. We have described the types of optical diffusers, the theory and measurement of light scattering, some common approaches for fabricating optical diffusers, the potential applications and recent developments of optical diffusers containing optical physical unclonable functions (PUFs), optical random number generators, passive stretchable radiative coolers, diffuser -based deep neural networks, lensless cameras or imaging systems, and three dimensinonal (3D) displays including two dimensional (2D)/3D switchable displays, which provide effective ways for designing high-performance optical films in the applications of optical devices. To satisfy the requirements for applications in stretchable optoelectronics and optomechanics, tunable optical diffusers stimulated by electric field, heat, light, mechanical field, or ultrasound attract much attention. Polymer/liquid crystal (LC) composite films with tunable light transmittance, haze, and diffusing intensity have been firstly provided and set a great foundation for the next generation of flexible and switchable optical diffusers.
This review summarizes the main types, processing methods, and applications of optical diffusers in LCDs, LED lighting, OLEDs, and solar cells. The tunable ones accelerate their applications in flexible opto-electronic, holographic, or 3D displays.</description><subject>Artificial neural networks</subject><subject>Backlights</subject><subject>Composite materials</subject><subject>Coolers</subject><subject>Diffusers</subject><subject>Electric fields</subject><subject>Haze</subject><subject>Light transmittance</subject><subject>Liquid crystal displays</subject><subject>Luminous intensity</subject><subject>Opto-mechanics</subject><subject>Optoelectronics</subject><subject>Organic light emitting diodes</subject><subject>Photonic crystals</subject><subject>Photovoltaic cells</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Random numbers</subject><subject>Solar cells</subject><subject>Thin films</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0c9LwzAUB_AgipvTi3el4EWEadr89jamU2EoyO4lTV61o79M2on_vZmbEzwlIR9e3vsGodMYX8eYqBub1A5TJlS-h4YJpnhMiEj2d3tOB-jI-yXGXBFODtGAcKaokHKIppPINFXr4B1qX6wgcrAq4DNq8qhpu8LoMrJFnvcenL-NWte8OfA-0rVdH3wLpvPH6CDXpYeT7TpCi9n9Yvo4nr88PE0n87EJ_XTjjKgk0VIJLhmjmoO0jGRCMQpUZrnWzAqhOFE5N0pZqbW0xBhrs1gRy8kIXW7Khoc_evBdWhXeQFnqGprep4ngmFEpFQ304h9dNr2rQ3NBCRyCYBwHdbVRJkziHeRp64pKu680xuk62fQueX79SXYW8Pm2ZJ9VYHf0N8oAzjbAebO7_fsa8g0_5nzy</recordid><startdate>20230127</startdate><enddate>20230127</enddate><creator>Zhou, Le</creator><creator>Liu, Sijie</creator><creator>Zhong, Tingjun</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7697-7369</orcidid></search><sort><creationdate>20230127</creationdate><title>A comprehensive review of optical diffusers: progress and prospects</title><author>Zhou, Le ; Liu, Sijie ; Zhong, Tingjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-b3922a89768554a6e8d53b7954e48bfaa5d779639f6c99d8aa8d3ccddb193d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Backlights</topic><topic>Composite materials</topic><topic>Coolers</topic><topic>Diffusers</topic><topic>Electric fields</topic><topic>Haze</topic><topic>Light transmittance</topic><topic>Liquid crystal displays</topic><topic>Luminous intensity</topic><topic>Opto-mechanics</topic><topic>Optoelectronics</topic><topic>Organic light emitting diodes</topic><topic>Photonic crystals</topic><topic>Photovoltaic cells</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Random numbers</topic><topic>Solar cells</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Le</creatorcontrib><creatorcontrib>Liu, Sijie</creatorcontrib><creatorcontrib>Zhong, Tingjun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Le</au><au>Liu, Sijie</au><au>Zhong, Tingjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comprehensive review of optical diffusers: progress and prospects</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2023-01-27</date><risdate>2023</risdate><volume>15</volume><issue>4</issue><spage>1484</spage><epage>1492</epage><pages>1484-1492</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Optical diffusers made of polymer composite materials are vital for many photonic and optoelectronic applictions such as backlight unit (BLU) in liquid crystal displays (LCDs), light extraction unit of organic light emitting diodes (OLEDs), and solar cells. We have described the types of optical diffusers, the theory and measurement of light scattering, some common approaches for fabricating optical diffusers, the potential applications and recent developments of optical diffusers containing optical physical unclonable functions (PUFs), optical random number generators, passive stretchable radiative coolers, diffuser -based deep neural networks, lensless cameras or imaging systems, and three dimensinonal (3D) displays including two dimensional (2D)/3D switchable displays, which provide effective ways for designing high-performance optical films in the applications of optical devices. To satisfy the requirements for applications in stretchable optoelectronics and optomechanics, tunable optical diffusers stimulated by electric field, heat, light, mechanical field, or ultrasound attract much attention. Polymer/liquid crystal (LC) composite films with tunable light transmittance, haze, and diffusing intensity have been firstly provided and set a great foundation for the next generation of flexible and switchable optical diffusers.
This review summarizes the main types, processing methods, and applications of optical diffusers in LCDs, LED lighting, OLEDs, and solar cells. The tunable ones accelerate their applications in flexible opto-electronic, holographic, or 3D displays.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>36594788</pmid><doi>10.1039/d2nr04579f</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7697-7369</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2023-01, Vol.15 (4), p.1484-1492 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2760548894 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Artificial neural networks Backlights Composite materials Coolers Diffusers Electric fields Haze Light transmittance Liquid crystal displays Luminous intensity Opto-mechanics Optoelectronics Organic light emitting diodes Photonic crystals Photovoltaic cells Polymer matrix composites Polymers Random numbers Solar cells Thin films |
title | A comprehensive review of optical diffusers: progress and prospects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comprehensive%20review%20of%20optical%20diffusers:%20progress%20and%20prospects&rft.jtitle=Nanoscale&rft.au=Zhou,%20Le&rft.date=2023-01-27&rft.volume=15&rft.issue=4&rft.spage=1484&rft.epage=1492&rft.pages=1484-1492&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d2nr04579f&rft_dat=%3Cproquest_cross%3E2770006560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770006560&rft_id=info:pmid/36594788&rfr_iscdi=true |