Full activation of thermogenesis in brown adipocytes requires Basigin action
Exploring mechanisms responsible for brown adipose tissue's (BAT) high metabolic activity is crucial to exploit its energy‐dissipating ability for therapeutic purposes. Basigin (Bsg), a multifunctional highly glycosylated transmembrane protein, was recently proposed as one of the 98 critical ma...
Gespeichert in:
Veröffentlicht in: | The FEBS journal 2023-05, Vol.290 (10), p.2673-2691 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2691 |
---|---|
container_issue | 10 |
container_start_page | 2673 |
container_title | The FEBS journal |
container_volume | 290 |
creator | Rupar, Kaja Isidor, Marie S. Argemi‐Muntadas, Lidia Agueda‐Oyarzabal, Marina Plucińska, Kaja Brown, Erin L. Mattanovich, Matthias Bossi, Simone Tozzi, Marco Tandio, David Petersen, Patricia S. S. Henriksen, Tora I. Trošt, Kajetan Hansen, Jacob B. Gerhart‐Hines, Zachary Nielsen, Søren Moritz, Thomas Emanuelli, Brice |
description | Exploring mechanisms responsible for brown adipose tissue's (BAT) high metabolic activity is crucial to exploit its energy‐dissipating ability for therapeutic purposes. Basigin (Bsg), a multifunctional highly glycosylated transmembrane protein, was recently proposed as one of the 98 critical markers allowing to distinguish ‘white’ and ‘brown’ adipocytes, yet its function in thermogenic brown adipocytes is unknown. Here, we report that Bsg is negatively associated with obesity in mice. By contrast, Bsg expression increased in the mature adipocyte fraction of BAT upon cold acclimation. Additionally, Bsg levels were highly induced during brown adipocyte maturation in vitro and were further increased upon β‐adrenergic stimulation in a HIF‐1α‐dependent manner. siRNA‐mediated Bsg gene silencing in cultured brown adipocytes did not impact adipogenesis nor mitochondrial function. However, a significant decrease in mitochondrial respiration, lipolysis and Ucp1 transcription was observed in adipocytes lacking Bsg, when activated by norepinephrine. Furthermore, using gas chromatography/mass spectrometry–time‐of‐flight analysis to assess the composition of cellular metabolites, we demonstrate that brown adipocytes lacking Bsg have lower levels of intracellular lactate and acetoacetate. Bsg was additionally required to regulate intracellular AcAc and tricarboxylic acid cycle intermediate levels in NE‐stimulated adipocytes. Our study highlights the critical role of Bsg in active brown adipocytes, possibly by controlling cellular metabolism.
A better understanding of underlying mechanisms mediating the remarkable energy‐dissipating capacity of brown adipose tissue (BAT) is necessary to explore its therapeutic potential for the treatment of obesity. Here, we reveal the dynamic regulation of a transmembrane protein Basigin in BAT and its previously uncharacterized role in brown fat function. We demonstrate that Basigin controls key processes crucial for the proper activation of BAT including Ucp1 expression, lipolysis and cellular metabolism. |
doi_str_mv | 10.1111/febs.16716 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2760548244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760548244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3936-5b311015dca0261785cd6606a22f8f72891eb8a9743fbb129baf370dcdfc37903</originalsourceid><addsrcrecordid>eNp9kM9LwzAUgIMobk4v_gFS8CJCZ341bY5ubCoMPKjgLaRpMjPaZktax_57Ozs9ePBd3jt8fDw-AC4RHKNu7ozOwxixFLEjMEQpxTFlSXb8e9P3ATgLYQUhSSjnp2BAWMITQvEQLOZtWUZSNfZTNtbVkTNR86F95Za61sGGyNZR7t22jmRh107tGh0irzet9d0xkcEuO2IvcPU5ODGyDPrisEfgbT57nT7Gi-eHp-n9IlaEExYnOUEIoqRQEmKG0ixRBWOQSYxNZlKccaTzTPKUEpPnCPNcGpLCQhVGkZRDMgI3vXft3abVoRGVDUqXpay1a4PAKYMJzTClHXr9B1251tfddwJniOKMMMo76ranlHcheG3E2ttK-p1AUOwbi31j8d24g68OyjavdPGL_kTtANQDW1vq3T8qMZ9NXnrpFzSNhiI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814283649</pqid></control><display><type>article</type><title>Full activation of thermogenesis in brown adipocytes requires Basigin action</title><source>MEDLINE</source><source>Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Free Full-Text Journals in Chemistry</source><creator>Rupar, Kaja ; Isidor, Marie S. ; Argemi‐Muntadas, Lidia ; Agueda‐Oyarzabal, Marina ; Plucińska, Kaja ; Brown, Erin L. ; Mattanovich, Matthias ; Bossi, Simone ; Tozzi, Marco ; Tandio, David ; Petersen, Patricia S. S. ; Henriksen, Tora I. ; Trošt, Kajetan ; Hansen, Jacob B. ; Gerhart‐Hines, Zachary ; Nielsen, Søren ; Moritz, Thomas ; Emanuelli, Brice</creator><creatorcontrib>Rupar, Kaja ; Isidor, Marie S. ; Argemi‐Muntadas, Lidia ; Agueda‐Oyarzabal, Marina ; Plucińska, Kaja ; Brown, Erin L. ; Mattanovich, Matthias ; Bossi, Simone ; Tozzi, Marco ; Tandio, David ; Petersen, Patricia S. S. ; Henriksen, Tora I. ; Trošt, Kajetan ; Hansen, Jacob B. ; Gerhart‐Hines, Zachary ; Nielsen, Søren ; Moritz, Thomas ; Emanuelli, Brice</creatorcontrib><description>Exploring mechanisms responsible for brown adipose tissue's (BAT) high metabolic activity is crucial to exploit its energy‐dissipating ability for therapeutic purposes. Basigin (Bsg), a multifunctional highly glycosylated transmembrane protein, was recently proposed as one of the 98 critical markers allowing to distinguish ‘white’ and ‘brown’ adipocytes, yet its function in thermogenic brown adipocytes is unknown. Here, we report that Bsg is negatively associated with obesity in mice. By contrast, Bsg expression increased in the mature adipocyte fraction of BAT upon cold acclimation. Additionally, Bsg levels were highly induced during brown adipocyte maturation in vitro and were further increased upon β‐adrenergic stimulation in a HIF‐1α‐dependent manner. siRNA‐mediated Bsg gene silencing in cultured brown adipocytes did not impact adipogenesis nor mitochondrial function. However, a significant decrease in mitochondrial respiration, lipolysis and Ucp1 transcription was observed in adipocytes lacking Bsg, when activated by norepinephrine. Furthermore, using gas chromatography/mass spectrometry–time‐of‐flight analysis to assess the composition of cellular metabolites, we demonstrate that brown adipocytes lacking Bsg have lower levels of intracellular lactate and acetoacetate. Bsg was additionally required to regulate intracellular AcAc and tricarboxylic acid cycle intermediate levels in NE‐stimulated adipocytes. Our study highlights the critical role of Bsg in active brown adipocytes, possibly by controlling cellular metabolism.
A better understanding of underlying mechanisms mediating the remarkable energy‐dissipating capacity of brown adipose tissue (BAT) is necessary to explore its therapeutic potential for the treatment of obesity. Here, we reveal the dynamic regulation of a transmembrane protein Basigin in BAT and its previously uncharacterized role in brown fat function. We demonstrate that Basigin controls key processes crucial for the proper activation of BAT including Ucp1 expression, lipolysis and cellular metabolism.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.16716</identifier><identifier>PMID: 36595342</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Acclimation ; Acclimatization ; Adipocytes ; Adipocytes, Brown - metabolism ; Adipogenesis ; Adipose tissue ; Adipose tissue (brown) ; Adipose Tissue, Brown - metabolism ; Animals ; Basigin ; Basigin - metabolism ; brown adipose tissue ; CD147 antigen ; Cold acclimation ; Gas chromatography ; Gene silencing ; Intracellular ; Lipolysis ; Mass spectrometry ; Mass spectroscopy ; Metabolism ; Metabolites ; Mice ; Mitochondria ; Norepinephrine ; Obesity - metabolism ; siRNA ; Therapeutic applications ; Thermogenesis ; Thermogenesis - genetics ; Tricarboxylic acid cycle ; Uncoupling Protein 1 - genetics ; Uncoupling Protein 1 - metabolism</subject><ispartof>The FEBS journal, 2023-05, Vol.290 (10), p.2673-2691</ispartof><rights>2023 The Authors. published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.</rights><rights>2023 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3936-5b311015dca0261785cd6606a22f8f72891eb8a9743fbb129baf370dcdfc37903</citedby><cites>FETCH-LOGICAL-c3936-5b311015dca0261785cd6606a22f8f72891eb8a9743fbb129baf370dcdfc37903</cites><orcidid>0000-0001-5249-2586 ; 0000-0001-5795-5666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffebs.16716$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffebs.16716$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,1434,27926,27927,45576,45577,46411,46835</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36595342$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rupar, Kaja</creatorcontrib><creatorcontrib>Isidor, Marie S.</creatorcontrib><creatorcontrib>Argemi‐Muntadas, Lidia</creatorcontrib><creatorcontrib>Agueda‐Oyarzabal, Marina</creatorcontrib><creatorcontrib>Plucińska, Kaja</creatorcontrib><creatorcontrib>Brown, Erin L.</creatorcontrib><creatorcontrib>Mattanovich, Matthias</creatorcontrib><creatorcontrib>Bossi, Simone</creatorcontrib><creatorcontrib>Tozzi, Marco</creatorcontrib><creatorcontrib>Tandio, David</creatorcontrib><creatorcontrib>Petersen, Patricia S. S.</creatorcontrib><creatorcontrib>Henriksen, Tora I.</creatorcontrib><creatorcontrib>Trošt, Kajetan</creatorcontrib><creatorcontrib>Hansen, Jacob B.</creatorcontrib><creatorcontrib>Gerhart‐Hines, Zachary</creatorcontrib><creatorcontrib>Nielsen, Søren</creatorcontrib><creatorcontrib>Moritz, Thomas</creatorcontrib><creatorcontrib>Emanuelli, Brice</creatorcontrib><title>Full activation of thermogenesis in brown adipocytes requires Basigin action</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>Exploring mechanisms responsible for brown adipose tissue's (BAT) high metabolic activity is crucial to exploit its energy‐dissipating ability for therapeutic purposes. Basigin (Bsg), a multifunctional highly glycosylated transmembrane protein, was recently proposed as one of the 98 critical markers allowing to distinguish ‘white’ and ‘brown’ adipocytes, yet its function in thermogenic brown adipocytes is unknown. Here, we report that Bsg is negatively associated with obesity in mice. By contrast, Bsg expression increased in the mature adipocyte fraction of BAT upon cold acclimation. Additionally, Bsg levels were highly induced during brown adipocyte maturation in vitro and were further increased upon β‐adrenergic stimulation in a HIF‐1α‐dependent manner. siRNA‐mediated Bsg gene silencing in cultured brown adipocytes did not impact adipogenesis nor mitochondrial function. However, a significant decrease in mitochondrial respiration, lipolysis and Ucp1 transcription was observed in adipocytes lacking Bsg, when activated by norepinephrine. Furthermore, using gas chromatography/mass spectrometry–time‐of‐flight analysis to assess the composition of cellular metabolites, we demonstrate that brown adipocytes lacking Bsg have lower levels of intracellular lactate and acetoacetate. Bsg was additionally required to regulate intracellular AcAc and tricarboxylic acid cycle intermediate levels in NE‐stimulated adipocytes. Our study highlights the critical role of Bsg in active brown adipocytes, possibly by controlling cellular metabolism.
A better understanding of underlying mechanisms mediating the remarkable energy‐dissipating capacity of brown adipose tissue (BAT) is necessary to explore its therapeutic potential for the treatment of obesity. Here, we reveal the dynamic regulation of a transmembrane protein Basigin in BAT and its previously uncharacterized role in brown fat function. We demonstrate that Basigin controls key processes crucial for the proper activation of BAT including Ucp1 expression, lipolysis and cellular metabolism.</description><subject>Acclimation</subject><subject>Acclimatization</subject><subject>Adipocytes</subject><subject>Adipocytes, Brown - metabolism</subject><subject>Adipogenesis</subject><subject>Adipose tissue</subject><subject>Adipose tissue (brown)</subject><subject>Adipose Tissue, Brown - metabolism</subject><subject>Animals</subject><subject>Basigin</subject><subject>Basigin - metabolism</subject><subject>brown adipose tissue</subject><subject>CD147 antigen</subject><subject>Cold acclimation</subject><subject>Gas chromatography</subject><subject>Gene silencing</subject><subject>Intracellular</subject><subject>Lipolysis</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Norepinephrine</subject><subject>Obesity - metabolism</subject><subject>siRNA</subject><subject>Therapeutic applications</subject><subject>Thermogenesis</subject><subject>Thermogenesis - genetics</subject><subject>Tricarboxylic acid cycle</subject><subject>Uncoupling Protein 1 - genetics</subject><subject>Uncoupling Protein 1 - metabolism</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp9kM9LwzAUgIMobk4v_gFS8CJCZ341bY5ubCoMPKjgLaRpMjPaZktax_57Ozs9ePBd3jt8fDw-AC4RHKNu7ozOwxixFLEjMEQpxTFlSXb8e9P3ATgLYQUhSSjnp2BAWMITQvEQLOZtWUZSNfZTNtbVkTNR86F95Za61sGGyNZR7t22jmRh107tGh0irzet9d0xkcEuO2IvcPU5ODGyDPrisEfgbT57nT7Gi-eHp-n9IlaEExYnOUEIoqRQEmKG0ixRBWOQSYxNZlKccaTzTPKUEpPnCPNcGpLCQhVGkZRDMgI3vXft3abVoRGVDUqXpay1a4PAKYMJzTClHXr9B1251tfddwJniOKMMMo76ranlHcheG3E2ttK-p1AUOwbi31j8d24g68OyjavdPGL_kTtANQDW1vq3T8qMZ9NXnrpFzSNhiI</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Rupar, Kaja</creator><creator>Isidor, Marie S.</creator><creator>Argemi‐Muntadas, Lidia</creator><creator>Agueda‐Oyarzabal, Marina</creator><creator>Plucińska, Kaja</creator><creator>Brown, Erin L.</creator><creator>Mattanovich, Matthias</creator><creator>Bossi, Simone</creator><creator>Tozzi, Marco</creator><creator>Tandio, David</creator><creator>Petersen, Patricia S. S.</creator><creator>Henriksen, Tora I.</creator><creator>Trošt, Kajetan</creator><creator>Hansen, Jacob B.</creator><creator>Gerhart‐Hines, Zachary</creator><creator>Nielsen, Søren</creator><creator>Moritz, Thomas</creator><creator>Emanuelli, Brice</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5249-2586</orcidid><orcidid>https://orcid.org/0000-0001-5795-5666</orcidid></search><sort><creationdate>202305</creationdate><title>Full activation of thermogenesis in brown adipocytes requires Basigin action</title><author>Rupar, Kaja ; Isidor, Marie S. ; Argemi‐Muntadas, Lidia ; Agueda‐Oyarzabal, Marina ; Plucińska, Kaja ; Brown, Erin L. ; Mattanovich, Matthias ; Bossi, Simone ; Tozzi, Marco ; Tandio, David ; Petersen, Patricia S. S. ; Henriksen, Tora I. ; Trošt, Kajetan ; Hansen, Jacob B. ; Gerhart‐Hines, Zachary ; Nielsen, Søren ; Moritz, Thomas ; Emanuelli, Brice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3936-5b311015dca0261785cd6606a22f8f72891eb8a9743fbb129baf370dcdfc37903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acclimation</topic><topic>Acclimatization</topic><topic>Adipocytes</topic><topic>Adipocytes, Brown - metabolism</topic><topic>Adipogenesis</topic><topic>Adipose tissue</topic><topic>Adipose tissue (brown)</topic><topic>Adipose Tissue, Brown - metabolism</topic><topic>Animals</topic><topic>Basigin</topic><topic>Basigin - metabolism</topic><topic>brown adipose tissue</topic><topic>CD147 antigen</topic><topic>Cold acclimation</topic><topic>Gas chromatography</topic><topic>Gene silencing</topic><topic>Intracellular</topic><topic>Lipolysis</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Norepinephrine</topic><topic>Obesity - metabolism</topic><topic>siRNA</topic><topic>Therapeutic applications</topic><topic>Thermogenesis</topic><topic>Thermogenesis - genetics</topic><topic>Tricarboxylic acid cycle</topic><topic>Uncoupling Protein 1 - genetics</topic><topic>Uncoupling Protein 1 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rupar, Kaja</creatorcontrib><creatorcontrib>Isidor, Marie S.</creatorcontrib><creatorcontrib>Argemi‐Muntadas, Lidia</creatorcontrib><creatorcontrib>Agueda‐Oyarzabal, Marina</creatorcontrib><creatorcontrib>Plucińska, Kaja</creatorcontrib><creatorcontrib>Brown, Erin L.</creatorcontrib><creatorcontrib>Mattanovich, Matthias</creatorcontrib><creatorcontrib>Bossi, Simone</creatorcontrib><creatorcontrib>Tozzi, Marco</creatorcontrib><creatorcontrib>Tandio, David</creatorcontrib><creatorcontrib>Petersen, Patricia S. S.</creatorcontrib><creatorcontrib>Henriksen, Tora I.</creatorcontrib><creatorcontrib>Trošt, Kajetan</creatorcontrib><creatorcontrib>Hansen, Jacob B.</creatorcontrib><creatorcontrib>Gerhart‐Hines, Zachary</creatorcontrib><creatorcontrib>Nielsen, Søren</creatorcontrib><creatorcontrib>Moritz, Thomas</creatorcontrib><creatorcontrib>Emanuelli, Brice</creatorcontrib><collection>Wiley Online Library website</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rupar, Kaja</au><au>Isidor, Marie S.</au><au>Argemi‐Muntadas, Lidia</au><au>Agueda‐Oyarzabal, Marina</au><au>Plucińska, Kaja</au><au>Brown, Erin L.</au><au>Mattanovich, Matthias</au><au>Bossi, Simone</au><au>Tozzi, Marco</au><au>Tandio, David</au><au>Petersen, Patricia S. S.</au><au>Henriksen, Tora I.</au><au>Trošt, Kajetan</au><au>Hansen, Jacob B.</au><au>Gerhart‐Hines, Zachary</au><au>Nielsen, Søren</au><au>Moritz, Thomas</au><au>Emanuelli, Brice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Full activation of thermogenesis in brown adipocytes requires Basigin action</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2023-05</date><risdate>2023</risdate><volume>290</volume><issue>10</issue><spage>2673</spage><epage>2691</epage><pages>2673-2691</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>Exploring mechanisms responsible for brown adipose tissue's (BAT) high metabolic activity is crucial to exploit its energy‐dissipating ability for therapeutic purposes. Basigin (Bsg), a multifunctional highly glycosylated transmembrane protein, was recently proposed as one of the 98 critical markers allowing to distinguish ‘white’ and ‘brown’ adipocytes, yet its function in thermogenic brown adipocytes is unknown. Here, we report that Bsg is negatively associated with obesity in mice. By contrast, Bsg expression increased in the mature adipocyte fraction of BAT upon cold acclimation. Additionally, Bsg levels were highly induced during brown adipocyte maturation in vitro and were further increased upon β‐adrenergic stimulation in a HIF‐1α‐dependent manner. siRNA‐mediated Bsg gene silencing in cultured brown adipocytes did not impact adipogenesis nor mitochondrial function. However, a significant decrease in mitochondrial respiration, lipolysis and Ucp1 transcription was observed in adipocytes lacking Bsg, when activated by norepinephrine. Furthermore, using gas chromatography/mass spectrometry–time‐of‐flight analysis to assess the composition of cellular metabolites, we demonstrate that brown adipocytes lacking Bsg have lower levels of intracellular lactate and acetoacetate. Bsg was additionally required to regulate intracellular AcAc and tricarboxylic acid cycle intermediate levels in NE‐stimulated adipocytes. Our study highlights the critical role of Bsg in active brown adipocytes, possibly by controlling cellular metabolism.
A better understanding of underlying mechanisms mediating the remarkable energy‐dissipating capacity of brown adipose tissue (BAT) is necessary to explore its therapeutic potential for the treatment of obesity. Here, we reveal the dynamic regulation of a transmembrane protein Basigin in BAT and its previously uncharacterized role in brown fat function. We demonstrate that Basigin controls key processes crucial for the proper activation of BAT including Ucp1 expression, lipolysis and cellular metabolism.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>36595342</pmid><doi>10.1111/febs.16716</doi><tpages>2691</tpages><orcidid>https://orcid.org/0000-0001-5249-2586</orcidid><orcidid>https://orcid.org/0000-0001-5795-5666</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-464X |
ispartof | The FEBS journal, 2023-05, Vol.290 (10), p.2673-2691 |
issn | 1742-464X 1742-4658 |
language | eng |
recordid | cdi_proquest_miscellaneous_2760548244 |
source | MEDLINE; Wiley Online Library; Wiley Online Library (Open Access Collection); Free Full-Text Journals in Chemistry |
subjects | Acclimation Acclimatization Adipocytes Adipocytes, Brown - metabolism Adipogenesis Adipose tissue Adipose tissue (brown) Adipose Tissue, Brown - metabolism Animals Basigin Basigin - metabolism brown adipose tissue CD147 antigen Cold acclimation Gas chromatography Gene silencing Intracellular Lipolysis Mass spectrometry Mass spectroscopy Metabolism Metabolites Mice Mitochondria Norepinephrine Obesity - metabolism siRNA Therapeutic applications Thermogenesis Thermogenesis - genetics Tricarboxylic acid cycle Uncoupling Protein 1 - genetics Uncoupling Protein 1 - metabolism |
title | Full activation of thermogenesis in brown adipocytes requires Basigin action |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A30%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Full%20activation%20of%20thermogenesis%20in%20brown%20adipocytes%20requires%20Basigin%20action&rft.jtitle=The%20FEBS%20journal&rft.au=Rupar,%20Kaja&rft.date=2023-05&rft.volume=290&rft.issue=10&rft.spage=2673&rft.epage=2691&rft.pages=2673-2691&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.16716&rft_dat=%3Cproquest_cross%3E2760548244%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814283649&rft_id=info:pmid/36595342&rfr_iscdi=true |