Carrier‐Free ATP‐Activated Nanoparticles for Combined Photodynamic Therapy and Chemotherapy under Near‐Infrared Light
The combination of photodynamic therapy (PDT) and chemotherapy (chemo‐photodynamic therapy) for enhancing cancer therapeutic efficiency has attracted tremendous attention in the recent years. However, limitations, such as low local concentration, non‐suitable treatment light source, and uncontrollab...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-03, Vol.19 (11), p.e2205825-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | e2205825 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 19 |
creator | Su, Zehou Xi, Dongmei Chen, Yingchao Wang, Ran Zeng, Xiaolong Xiong, Tao Xia, Xiang Rong, Xiang Liu, Ting Liu, Wenkai Du, Jianjun Fan, Jiangli Peng, Xiaojun Sun, Wen |
description | The combination of photodynamic therapy (PDT) and chemotherapy (chemo‐photodynamic therapy) for enhancing cancer therapeutic efficiency has attracted tremendous attention in the recent years. However, limitations, such as low local concentration, non‐suitable treatment light source, and uncontrollable release of therapeutic agents, result in reduced combined treatment efficacy. This study considered adenosine triphosphate (ATP), which is highly upregulated in tumor cells, as a biomarker and developed ingenious ATP‐activated nanoparticles (CDNPs) that are directly self‐assembled from near‐infrared photosensitizer (Cy‐I) and amphiphilic Cd(II) complex (DPA‐Cd). After selective entry into tumor cells, the positively charged CDNPs would escape from lysosomes and be disintegrated by the high ATP concentration in the cytoplasm. The released Cy‐I is capable of producing single oxygen (1O2) for PDT with 808 nm irradiation and DPA‐Cd can concurrently function for chemotherapy. Irradiation with 808 nm light can lead to tumor ablation in tumor‐bearing mice after intravenous injection of CDNPs. This carrier‐free nanoparticle offers a new platform for chemo‐photodynamic therapy.
ATP‐activatable nanoparticles (CDNPs), which is composed by near‐infrared photosensitizer (Cy‐I) and amphiphilic Cd(II) complex (DPA‐Cd) via self‐assembly, can enter into tumor cells and make a quick escape from lysosomes. Through interaction with cytoplasmic adenosine triphosphate (ATP), Cy‐I and DPA‐Cd will be released from CDNPs and function for chemo‐photodynamic therapy under 808 nm laser. |
doi_str_mv | 10.1002/smll.202205825 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2760172106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786729971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3735-baafab7d1dfb4328177b6f4f7c7e0d4ed8df46dde8666836ab02dd8f32bf07c33</originalsourceid><addsrcrecordid>eNqFkc9O4zAQxi3ECljgyhFF4rKXdv0ntZ1jFQGLFFgkyjly4jE1SuJiJ6wqLjwCz8iT4KqlSFz2NJ9mfvPNSB9CJwSPCcb0d2ibZkwxpXgi6WQHHRBO2IhLmu1uNcH76GcIjxgzQlOxh_YZn0iRSXqAXnLlvQX__vp24QGS6ew2ymnd22fVg05uVOcWyve2biAkxvkkd21luzi6nbve6WWnWlsnszl4tVgmqtNJPofW9ZvG0GnwyQ2o1Ymrznjl425hH-b9EfphVBPgeFMP0f3F-Sz_Myr-Xl7l02JUM8Emo0opoyqhiTZVyqgkQlTcpEbUArBOQUttUq41SM65ZFxVmGotDaOVwaJm7BD9WvsuvHsaIPRla0MNTaM6cEMoqeCYCEowj-jZN_TRDb6L30VKckGzTJBIjddU7V0IHky58LZVflkSXK5iKVexlNtY4sLpxnaoWtBb_DOHCGRr4J9tYPkfu_Luuii-zD8Ah5Sejg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786729971</pqid></control><display><type>article</type><title>Carrier‐Free ATP‐Activated Nanoparticles for Combined Photodynamic Therapy and Chemotherapy under Near‐Infrared Light</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Su, Zehou ; Xi, Dongmei ; Chen, Yingchao ; Wang, Ran ; Zeng, Xiaolong ; Xiong, Tao ; Xia, Xiang ; Rong, Xiang ; Liu, Ting ; Liu, Wenkai ; Du, Jianjun ; Fan, Jiangli ; Peng, Xiaojun ; Sun, Wen</creator><creatorcontrib>Su, Zehou ; Xi, Dongmei ; Chen, Yingchao ; Wang, Ran ; Zeng, Xiaolong ; Xiong, Tao ; Xia, Xiang ; Rong, Xiang ; Liu, Ting ; Liu, Wenkai ; Du, Jianjun ; Fan, Jiangli ; Peng, Xiaojun ; Sun, Wen</creatorcontrib><description>The combination of photodynamic therapy (PDT) and chemotherapy (chemo‐photodynamic therapy) for enhancing cancer therapeutic efficiency has attracted tremendous attention in the recent years. However, limitations, such as low local concentration, non‐suitable treatment light source, and uncontrollable release of therapeutic agents, result in reduced combined treatment efficacy. This study considered adenosine triphosphate (ATP), which is highly upregulated in tumor cells, as a biomarker and developed ingenious ATP‐activated nanoparticles (CDNPs) that are directly self‐assembled from near‐infrared photosensitizer (Cy‐I) and amphiphilic Cd(II) complex (DPA‐Cd). After selective entry into tumor cells, the positively charged CDNPs would escape from lysosomes and be disintegrated by the high ATP concentration in the cytoplasm. The released Cy‐I is capable of producing single oxygen (1O2) for PDT with 808 nm irradiation and DPA‐Cd can concurrently function for chemotherapy. Irradiation with 808 nm light can lead to tumor ablation in tumor‐bearing mice after intravenous injection of CDNPs. This carrier‐free nanoparticle offers a new platform for chemo‐photodynamic therapy.
ATP‐activatable nanoparticles (CDNPs), which is composed by near‐infrared photosensitizer (Cy‐I) and amphiphilic Cd(II) complex (DPA‐Cd) via self‐assembly, can enter into tumor cells and make a quick escape from lysosomes. Through interaction with cytoplasmic adenosine triphosphate (ATP), Cy‐I and DPA‐Cd will be released from CDNPs and function for chemo‐photodynamic therapy under 808 nm laser.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202205825</identifier><identifier>PMID: 36587982</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Ablation ; Adenosine triphosphate ; amphiphilic metal complex ; Animals ; ATP‐activated nanoparticles ; Biomarkers ; Cadmium ; Cadmium compounds ; Chemotherapy ; chemo‐photodynamic therapy ; Cytoplasm ; Disintegration ; Infrared radiation ; Infrared Rays ; Irradiation ; Light sources ; Lysosomes ; Mice ; Nanoparticles ; Nanotechnology ; near‐infrared photosensitizers ; Neoplasms - drug therapy ; Pharmacology ; Photochemotherapy ; Photodynamic therapy ; Photosensitizing Agents - therapeutic use ; reactive oxygen species ; Tumors</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-03, Vol.19 (11), p.e2205825-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3735-baafab7d1dfb4328177b6f4f7c7e0d4ed8df46dde8666836ab02dd8f32bf07c33</citedby><cites>FETCH-LOGICAL-c3735-baafab7d1dfb4328177b6f4f7c7e0d4ed8df46dde8666836ab02dd8f32bf07c33</cites><orcidid>0000-0003-4316-5350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202205825$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202205825$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36587982$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Zehou</creatorcontrib><creatorcontrib>Xi, Dongmei</creatorcontrib><creatorcontrib>Chen, Yingchao</creatorcontrib><creatorcontrib>Wang, Ran</creatorcontrib><creatorcontrib>Zeng, Xiaolong</creatorcontrib><creatorcontrib>Xiong, Tao</creatorcontrib><creatorcontrib>Xia, Xiang</creatorcontrib><creatorcontrib>Rong, Xiang</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Liu, Wenkai</creatorcontrib><creatorcontrib>Du, Jianjun</creatorcontrib><creatorcontrib>Fan, Jiangli</creatorcontrib><creatorcontrib>Peng, Xiaojun</creatorcontrib><creatorcontrib>Sun, Wen</creatorcontrib><title>Carrier‐Free ATP‐Activated Nanoparticles for Combined Photodynamic Therapy and Chemotherapy under Near‐Infrared Light</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>The combination of photodynamic therapy (PDT) and chemotherapy (chemo‐photodynamic therapy) for enhancing cancer therapeutic efficiency has attracted tremendous attention in the recent years. However, limitations, such as low local concentration, non‐suitable treatment light source, and uncontrollable release of therapeutic agents, result in reduced combined treatment efficacy. This study considered adenosine triphosphate (ATP), which is highly upregulated in tumor cells, as a biomarker and developed ingenious ATP‐activated nanoparticles (CDNPs) that are directly self‐assembled from near‐infrared photosensitizer (Cy‐I) and amphiphilic Cd(II) complex (DPA‐Cd). After selective entry into tumor cells, the positively charged CDNPs would escape from lysosomes and be disintegrated by the high ATP concentration in the cytoplasm. The released Cy‐I is capable of producing single oxygen (1O2) for PDT with 808 nm irradiation and DPA‐Cd can concurrently function for chemotherapy. Irradiation with 808 nm light can lead to tumor ablation in tumor‐bearing mice after intravenous injection of CDNPs. This carrier‐free nanoparticle offers a new platform for chemo‐photodynamic therapy.
ATP‐activatable nanoparticles (CDNPs), which is composed by near‐infrared photosensitizer (Cy‐I) and amphiphilic Cd(II) complex (DPA‐Cd) via self‐assembly, can enter into tumor cells and make a quick escape from lysosomes. Through interaction with cytoplasmic adenosine triphosphate (ATP), Cy‐I and DPA‐Cd will be released from CDNPs and function for chemo‐photodynamic therapy under 808 nm laser.</description><subject>Ablation</subject><subject>Adenosine triphosphate</subject><subject>amphiphilic metal complex</subject><subject>Animals</subject><subject>ATP‐activated nanoparticles</subject><subject>Biomarkers</subject><subject>Cadmium</subject><subject>Cadmium compounds</subject><subject>Chemotherapy</subject><subject>chemo‐photodynamic therapy</subject><subject>Cytoplasm</subject><subject>Disintegration</subject><subject>Infrared radiation</subject><subject>Infrared Rays</subject><subject>Irradiation</subject><subject>Light sources</subject><subject>Lysosomes</subject><subject>Mice</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>near‐infrared photosensitizers</subject><subject>Neoplasms - drug therapy</subject><subject>Pharmacology</subject><subject>Photochemotherapy</subject><subject>Photodynamic therapy</subject><subject>Photosensitizing Agents - therapeutic use</subject><subject>reactive oxygen species</subject><subject>Tumors</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9O4zAQxi3ECljgyhFF4rKXdv0ntZ1jFQGLFFgkyjly4jE1SuJiJ6wqLjwCz8iT4KqlSFz2NJ9mfvPNSB9CJwSPCcb0d2ibZkwxpXgi6WQHHRBO2IhLmu1uNcH76GcIjxgzQlOxh_YZn0iRSXqAXnLlvQX__vp24QGS6ew2ymnd22fVg05uVOcWyve2biAkxvkkd21luzi6nbve6WWnWlsnszl4tVgmqtNJPofW9ZvG0GnwyQ2o1Ymrznjl425hH-b9EfphVBPgeFMP0f3F-Sz_Myr-Xl7l02JUM8Emo0opoyqhiTZVyqgkQlTcpEbUArBOQUttUq41SM65ZFxVmGotDaOVwaJm7BD9WvsuvHsaIPRla0MNTaM6cEMoqeCYCEowj-jZN_TRDb6L30VKckGzTJBIjddU7V0IHky58LZVflkSXK5iKVexlNtY4sLpxnaoWtBb_DOHCGRr4J9tYPkfu_Luuii-zD8Ah5Sejg</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Su, Zehou</creator><creator>Xi, Dongmei</creator><creator>Chen, Yingchao</creator><creator>Wang, Ran</creator><creator>Zeng, Xiaolong</creator><creator>Xiong, Tao</creator><creator>Xia, Xiang</creator><creator>Rong, Xiang</creator><creator>Liu, Ting</creator><creator>Liu, Wenkai</creator><creator>Du, Jianjun</creator><creator>Fan, Jiangli</creator><creator>Peng, Xiaojun</creator><creator>Sun, Wen</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4316-5350</orcidid></search><sort><creationdate>20230301</creationdate><title>Carrier‐Free ATP‐Activated Nanoparticles for Combined Photodynamic Therapy and Chemotherapy under Near‐Infrared Light</title><author>Su, Zehou ; Xi, Dongmei ; Chen, Yingchao ; Wang, Ran ; Zeng, Xiaolong ; Xiong, Tao ; Xia, Xiang ; Rong, Xiang ; Liu, Ting ; Liu, Wenkai ; Du, Jianjun ; Fan, Jiangli ; Peng, Xiaojun ; Sun, Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3735-baafab7d1dfb4328177b6f4f7c7e0d4ed8df46dde8666836ab02dd8f32bf07c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ablation</topic><topic>Adenosine triphosphate</topic><topic>amphiphilic metal complex</topic><topic>Animals</topic><topic>ATP‐activated nanoparticles</topic><topic>Biomarkers</topic><topic>Cadmium</topic><topic>Cadmium compounds</topic><topic>Chemotherapy</topic><topic>chemo‐photodynamic therapy</topic><topic>Cytoplasm</topic><topic>Disintegration</topic><topic>Infrared radiation</topic><topic>Infrared Rays</topic><topic>Irradiation</topic><topic>Light sources</topic><topic>Lysosomes</topic><topic>Mice</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>near‐infrared photosensitizers</topic><topic>Neoplasms - drug therapy</topic><topic>Pharmacology</topic><topic>Photochemotherapy</topic><topic>Photodynamic therapy</topic><topic>Photosensitizing Agents - therapeutic use</topic><topic>reactive oxygen species</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Zehou</creatorcontrib><creatorcontrib>Xi, Dongmei</creatorcontrib><creatorcontrib>Chen, Yingchao</creatorcontrib><creatorcontrib>Wang, Ran</creatorcontrib><creatorcontrib>Zeng, Xiaolong</creatorcontrib><creatorcontrib>Xiong, Tao</creatorcontrib><creatorcontrib>Xia, Xiang</creatorcontrib><creatorcontrib>Rong, Xiang</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Liu, Wenkai</creatorcontrib><creatorcontrib>Du, Jianjun</creatorcontrib><creatorcontrib>Fan, Jiangli</creatorcontrib><creatorcontrib>Peng, Xiaojun</creatorcontrib><creatorcontrib>Sun, Wen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Zehou</au><au>Xi, Dongmei</au><au>Chen, Yingchao</au><au>Wang, Ran</au><au>Zeng, Xiaolong</au><au>Xiong, Tao</au><au>Xia, Xiang</au><au>Rong, Xiang</au><au>Liu, Ting</au><au>Liu, Wenkai</au><au>Du, Jianjun</au><au>Fan, Jiangli</au><au>Peng, Xiaojun</au><au>Sun, Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carrier‐Free ATP‐Activated Nanoparticles for Combined Photodynamic Therapy and Chemotherapy under Near‐Infrared Light</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>19</volume><issue>11</issue><spage>e2205825</spage><epage>n/a</epage><pages>e2205825-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>The combination of photodynamic therapy (PDT) and chemotherapy (chemo‐photodynamic therapy) for enhancing cancer therapeutic efficiency has attracted tremendous attention in the recent years. However, limitations, such as low local concentration, non‐suitable treatment light source, and uncontrollable release of therapeutic agents, result in reduced combined treatment efficacy. This study considered adenosine triphosphate (ATP), which is highly upregulated in tumor cells, as a biomarker and developed ingenious ATP‐activated nanoparticles (CDNPs) that are directly self‐assembled from near‐infrared photosensitizer (Cy‐I) and amphiphilic Cd(II) complex (DPA‐Cd). After selective entry into tumor cells, the positively charged CDNPs would escape from lysosomes and be disintegrated by the high ATP concentration in the cytoplasm. The released Cy‐I is capable of producing single oxygen (1O2) for PDT with 808 nm irradiation and DPA‐Cd can concurrently function for chemotherapy. Irradiation with 808 nm light can lead to tumor ablation in tumor‐bearing mice after intravenous injection of CDNPs. This carrier‐free nanoparticle offers a new platform for chemo‐photodynamic therapy.
ATP‐activatable nanoparticles (CDNPs), which is composed by near‐infrared photosensitizer (Cy‐I) and amphiphilic Cd(II) complex (DPA‐Cd) via self‐assembly, can enter into tumor cells and make a quick escape from lysosomes. Through interaction with cytoplasmic adenosine triphosphate (ATP), Cy‐I and DPA‐Cd will be released from CDNPs and function for chemo‐photodynamic therapy under 808 nm laser.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36587982</pmid><doi>10.1002/smll.202205825</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4316-5350</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2023-03, Vol.19 (11), p.e2205825-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2760172106 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Ablation Adenosine triphosphate amphiphilic metal complex Animals ATP‐activated nanoparticles Biomarkers Cadmium Cadmium compounds Chemotherapy chemo‐photodynamic therapy Cytoplasm Disintegration Infrared radiation Infrared Rays Irradiation Light sources Lysosomes Mice Nanoparticles Nanotechnology near‐infrared photosensitizers Neoplasms - drug therapy Pharmacology Photochemotherapy Photodynamic therapy Photosensitizing Agents - therapeutic use reactive oxygen species Tumors |
title | Carrier‐Free ATP‐Activated Nanoparticles for Combined Photodynamic Therapy and Chemotherapy under Near‐Infrared Light |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A29%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carrier%E2%80%90Free%20ATP%E2%80%90Activated%20Nanoparticles%20for%20Combined%20Photodynamic%20Therapy%20and%20Chemotherapy%20under%20Near%E2%80%90Infrared%20Light&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Su,%20Zehou&rft.date=2023-03-01&rft.volume=19&rft.issue=11&rft.spage=e2205825&rft.epage=n/a&rft.pages=e2205825-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202205825&rft_dat=%3Cproquest_cross%3E2786729971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786729971&rft_id=info:pmid/36587982&rfr_iscdi=true |