Atomically Incorporating Ni into Mesoporous CeO2 Matrix via Synchronous Spray-Pyrolysis as Efficient Noble-Metal-Free Catalyst for Low-Temperature CO Oxidation

Low-temperature catalytic CO oxidation is an important chemical process in versatile applications, such as the H2 utilization for low-temperature H2 air fuel cells. Pt-group metal catalysts are efficient but highly cost-consuming. This work demonstrates an excellent and sixpenny catalyst with earth-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2023-01, Vol.62 (2), p.782-791
Hauptverfasser: Sun, Na, Xiang, Linlin, Zhuge, Bingsen, Kan, Erjie, Yu, Nan, Li, Lei, Kuai, Long
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 791
container_issue 2
container_start_page 782
container_title Inorganic chemistry
container_volume 62
creator Sun, Na
Xiang, Linlin
Zhuge, Bingsen
Kan, Erjie
Yu, Nan
Li, Lei
Kuai, Long
description Low-temperature catalytic CO oxidation is an important chemical process in versatile applications, such as the H2 utilization for low-temperature H2 air fuel cells. Pt-group metal catalysts are efficient but highly cost-consuming. This work demonstrates an excellent and sixpenny catalyst with earth-abundant Ni and Ce, in which Ni ions are atomically incorporated into the CeO2 matrix (Ni–Ce–O x ) by synchronous spray-pyrolysis (SSP) of mixture nitrates of Ni and Ce. The Ni–Ce–O x catalyst presents a mesoporous structure. Revealed by a model reaction of 1% CO, 1% O2, and 98% balance He at a space velocity of 13,200 mL/gcat/h, Ni–Ce–O x catalysts display a typical volcano-shaped relationship between reactivity and Ni incorporation amount. The optimized Ni incorporation appears with a high Ni/Ce atomic ratio of 0.25, endowing the T 50 (temperature corresponding to a CO conversion of 50%), which is lower-shifted by 165 °C than that of pristine CeO2 (266 °C). The density functional theory (DFT) calculations further indicate that the much-reduced oxygen vacancy formation energy at Ni–Ce single-atom sites boosted the adsorption activation of the CO molecule and therefore promoted the CO oxidation process. Besides, the2 Ni–Ce–O x from the SSP method presents better performance than the counterparts from immersion and hydrothermal methods. This work paves a way to access efficient noble-metal-free catalysts for low-temperature CO oxidation.
doi_str_mv 10.1021/acs.inorgchem.2c03293
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2759959654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2759959654</sourcerecordid><originalsourceid>FETCH-LOGICAL-a230t-1a5594cd641e863bcca8e5266600d6e40a6665ee6fd191bd289a5b4eb562f13c3</originalsourceid><addsrcrecordid>eNo9UctOwzAQtBBIlMcnIPnIJcV2YlMfUcWjUkuQWiRukeNswFViF9uF5mv4VVxRcdrRzmh3dgehK0rGlDB6o3QYG-v8u_6Afsw0yZnMj9CIckYyTsnbMRoRkjAVQp6isxDWhBCZF2KEfu6i641WXTfgmdXOb5xX0dh3_GywsdHhBQSXmm4b8BRKhhcqerPDX0bh5WD1h3d2zy03Xg3Zy-BdNwQTsAr4vm2NNmAjfnZ1B9kCouqyBw-ApyrBIUTcOo_n7jtbQb-BtHnrE1nicmeaZMPZC3TSqi7A5aGeo9eH-9X0KZuXj7Pp3TxTLCcxo4pzWehGFBQmIq-1VhPgTAhBSCOgICpBDiDahkpaN2wiFa8LqLlgLc11fo6u_-ZuvPvcQohVb4KGrlMW0nkVu-VScil4kaT0T5r-Xq3d1ttkrKKk2odR7Zv_YVSHMPJf6RSEdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759959654</pqid></control><display><type>article</type><title>Atomically Incorporating Ni into Mesoporous CeO2 Matrix via Synchronous Spray-Pyrolysis as Efficient Noble-Metal-Free Catalyst for Low-Temperature CO Oxidation</title><source>ACS Publications</source><creator>Sun, Na ; Xiang, Linlin ; Zhuge, Bingsen ; Kan, Erjie ; Yu, Nan ; Li, Lei ; Kuai, Long</creator><creatorcontrib>Sun, Na ; Xiang, Linlin ; Zhuge, Bingsen ; Kan, Erjie ; Yu, Nan ; Li, Lei ; Kuai, Long</creatorcontrib><description>Low-temperature catalytic CO oxidation is an important chemical process in versatile applications, such as the H2 utilization for low-temperature H2 air fuel cells. Pt-group metal catalysts are efficient but highly cost-consuming. This work demonstrates an excellent and sixpenny catalyst with earth-abundant Ni and Ce, in which Ni ions are atomically incorporated into the CeO2 matrix (Ni–Ce–O x ) by synchronous spray-pyrolysis (SSP) of mixture nitrates of Ni and Ce. The Ni–Ce–O x catalyst presents a mesoporous structure. Revealed by a model reaction of 1% CO, 1% O2, and 98% balance He at a space velocity of 13,200 mL/gcat/h, Ni–Ce–O x catalysts display a typical volcano-shaped relationship between reactivity and Ni incorporation amount. The optimized Ni incorporation appears with a high Ni/Ce atomic ratio of 0.25, endowing the T 50 (temperature corresponding to a CO conversion of 50%), which is lower-shifted by 165 °C than that of pristine CeO2 (266 °C). The density functional theory (DFT) calculations further indicate that the much-reduced oxygen vacancy formation energy at Ni–Ce single-atom sites boosted the adsorption activation of the CO molecule and therefore promoted the CO oxidation process. Besides, the2 Ni–Ce–O x from the SSP method presents better performance than the counterparts from immersion and hydrothermal methods. This work paves a way to access efficient noble-metal-free catalysts for low-temperature CO oxidation.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/acs.inorgchem.2c03293</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Inorganic chemistry, 2023-01, Vol.62 (2), p.782-791</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8633-0320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.2c03293$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.inorgchem.2c03293$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56717,56767</link.rule.ids></links><search><creatorcontrib>Sun, Na</creatorcontrib><creatorcontrib>Xiang, Linlin</creatorcontrib><creatorcontrib>Zhuge, Bingsen</creatorcontrib><creatorcontrib>Kan, Erjie</creatorcontrib><creatorcontrib>Yu, Nan</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Kuai, Long</creatorcontrib><title>Atomically Incorporating Ni into Mesoporous CeO2 Matrix via Synchronous Spray-Pyrolysis as Efficient Noble-Metal-Free Catalyst for Low-Temperature CO Oxidation</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>Low-temperature catalytic CO oxidation is an important chemical process in versatile applications, such as the H2 utilization for low-temperature H2 air fuel cells. Pt-group metal catalysts are efficient but highly cost-consuming. This work demonstrates an excellent and sixpenny catalyst with earth-abundant Ni and Ce, in which Ni ions are atomically incorporated into the CeO2 matrix (Ni–Ce–O x ) by synchronous spray-pyrolysis (SSP) of mixture nitrates of Ni and Ce. The Ni–Ce–O x catalyst presents a mesoporous structure. Revealed by a model reaction of 1% CO, 1% O2, and 98% balance He at a space velocity of 13,200 mL/gcat/h, Ni–Ce–O x catalysts display a typical volcano-shaped relationship between reactivity and Ni incorporation amount. The optimized Ni incorporation appears with a high Ni/Ce atomic ratio of 0.25, endowing the T 50 (temperature corresponding to a CO conversion of 50%), which is lower-shifted by 165 °C than that of pristine CeO2 (266 °C). The density functional theory (DFT) calculations further indicate that the much-reduced oxygen vacancy formation energy at Ni–Ce single-atom sites boosted the adsorption activation of the CO molecule and therefore promoted the CO oxidation process. Besides, the2 Ni–Ce–O x from the SSP method presents better performance than the counterparts from immersion and hydrothermal methods. This work paves a way to access efficient noble-metal-free catalysts for low-temperature CO oxidation.</description><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9UctOwzAQtBBIlMcnIPnIJcV2YlMfUcWjUkuQWiRukeNswFViF9uF5mv4VVxRcdrRzmh3dgehK0rGlDB6o3QYG-v8u_6Afsw0yZnMj9CIckYyTsnbMRoRkjAVQp6isxDWhBCZF2KEfu6i641WXTfgmdXOb5xX0dh3_GywsdHhBQSXmm4b8BRKhhcqerPDX0bh5WD1h3d2zy03Xg3Zy-BdNwQTsAr4vm2NNmAjfnZ1B9kCouqyBw-ApyrBIUTcOo_n7jtbQb-BtHnrE1nicmeaZMPZC3TSqi7A5aGeo9eH-9X0KZuXj7Pp3TxTLCcxo4pzWehGFBQmIq-1VhPgTAhBSCOgICpBDiDahkpaN2wiFa8LqLlgLc11fo6u_-ZuvPvcQohVb4KGrlMW0nkVu-VScil4kaT0T5r-Xq3d1ttkrKKk2odR7Zv_YVSHMPJf6RSEdw</recordid><startdate>20230116</startdate><enddate>20230116</enddate><creator>Sun, Na</creator><creator>Xiang, Linlin</creator><creator>Zhuge, Bingsen</creator><creator>Kan, Erjie</creator><creator>Yu, Nan</creator><creator>Li, Lei</creator><creator>Kuai, Long</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8633-0320</orcidid></search><sort><creationdate>20230116</creationdate><title>Atomically Incorporating Ni into Mesoporous CeO2 Matrix via Synchronous Spray-Pyrolysis as Efficient Noble-Metal-Free Catalyst for Low-Temperature CO Oxidation</title><author>Sun, Na ; Xiang, Linlin ; Zhuge, Bingsen ; Kan, Erjie ; Yu, Nan ; Li, Lei ; Kuai, Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a230t-1a5594cd641e863bcca8e5266600d6e40a6665ee6fd191bd289a5b4eb562f13c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Na</creatorcontrib><creatorcontrib>Xiang, Linlin</creatorcontrib><creatorcontrib>Zhuge, Bingsen</creatorcontrib><creatorcontrib>Kan, Erjie</creatorcontrib><creatorcontrib>Yu, Nan</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Kuai, Long</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Na</au><au>Xiang, Linlin</au><au>Zhuge, Bingsen</au><au>Kan, Erjie</au><au>Yu, Nan</au><au>Li, Lei</au><au>Kuai, Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomically Incorporating Ni into Mesoporous CeO2 Matrix via Synchronous Spray-Pyrolysis as Efficient Noble-Metal-Free Catalyst for Low-Temperature CO Oxidation</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2023-01-16</date><risdate>2023</risdate><volume>62</volume><issue>2</issue><spage>782</spage><epage>791</epage><pages>782-791</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>Low-temperature catalytic CO oxidation is an important chemical process in versatile applications, such as the H2 utilization for low-temperature H2 air fuel cells. Pt-group metal catalysts are efficient but highly cost-consuming. This work demonstrates an excellent and sixpenny catalyst with earth-abundant Ni and Ce, in which Ni ions are atomically incorporated into the CeO2 matrix (Ni–Ce–O x ) by synchronous spray-pyrolysis (SSP) of mixture nitrates of Ni and Ce. The Ni–Ce–O x catalyst presents a mesoporous structure. Revealed by a model reaction of 1% CO, 1% O2, and 98% balance He at a space velocity of 13,200 mL/gcat/h, Ni–Ce–O x catalysts display a typical volcano-shaped relationship between reactivity and Ni incorporation amount. The optimized Ni incorporation appears with a high Ni/Ce atomic ratio of 0.25, endowing the T 50 (temperature corresponding to a CO conversion of 50%), which is lower-shifted by 165 °C than that of pristine CeO2 (266 °C). The density functional theory (DFT) calculations further indicate that the much-reduced oxygen vacancy formation energy at Ni–Ce single-atom sites boosted the adsorption activation of the CO molecule and therefore promoted the CO oxidation process. Besides, the2 Ni–Ce–O x from the SSP method presents better performance than the counterparts from immersion and hydrothermal methods. This work paves a way to access efficient noble-metal-free catalysts for low-temperature CO oxidation.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.inorgchem.2c03293</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8633-0320</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-1669
ispartof Inorganic chemistry, 2023-01, Vol.62 (2), p.782-791
issn 0020-1669
1520-510X
language eng
recordid cdi_proquest_miscellaneous_2759959654
source ACS Publications
title Atomically Incorporating Ni into Mesoporous CeO2 Matrix via Synchronous Spray-Pyrolysis as Efficient Noble-Metal-Free Catalyst for Low-Temperature CO Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A20%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomically%20Incorporating%20Ni%20into%20Mesoporous%20CeO2%20Matrix%20via%20Synchronous%20Spray-Pyrolysis%20as%20Efficient%20Noble-Metal-Free%20Catalyst%20for%20Low-Temperature%20CO%20Oxidation&rft.jtitle=Inorganic%20chemistry&rft.au=Sun,%20Na&rft.date=2023-01-16&rft.volume=62&rft.issue=2&rft.spage=782&rft.epage=791&rft.pages=782-791&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/acs.inorgchem.2c03293&rft_dat=%3Cproquest_acs_j%3E2759959654%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759959654&rft_id=info:pmid/&rfr_iscdi=true