Registration on DCE-MRI images via multi-domain image-to-image translation

Registration of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is challenging as rapid intensity changes caused by a contrast agent lead to large registration errors. To address this problem, we propose a novel multi-domain image-to-image translation (MDIT) network based on image dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computerized medical imaging and graphics 2023-03, Vol.104, p.102169-102169, Article 102169
Hauptverfasser: Cai, Naxin, Chen, Houjin, Li, Yanfeng, Peng, Yahui, Guo, Linqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102169
container_issue
container_start_page 102169
container_title Computerized medical imaging and graphics
container_volume 104
creator Cai, Naxin
Chen, Houjin
Li, Yanfeng
Peng, Yahui
Guo, Linqiang
description Registration of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is challenging as rapid intensity changes caused by a contrast agent lead to large registration errors. To address this problem, we propose a novel multi-domain image-to-image translation (MDIT) network based on image disentangling for separating motion from contrast changes before registration. In particular, the DCE images are disentangled into a domain-invariant content space (motion) and a domain-specific attribute space (contrast changes). The disentangled representations are then used to generate images, where the contrast changes have been removed from the motion. After that the resulting deformations can be directly derived from the generated images using an FFD registration. The method is tested on 10 lung DCE-MRI cases. The proposed method reaches an average root mean squared error of 0.3 ± 0.41 and the separation time is about 2.4 s for each case. Results show that the proposed method improves the registration efficiency without losing the registration accuracy compared with several state-of-the-art registration methods. •We formulate the problem of separation of motion and contrast changes as an image-to-image translation problem.•We propose a novel I2I network, namely MDIT, for translating DCE-MRI images cross multiple domains.•Experimental results demonstrate the superiority of our method compared with some state-of-the-art registration methods.
doi_str_mv 10.1016/j.compmedimag.2022.102169
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2759958423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895611122001392</els_id><sourcerecordid>2759958423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-ed71023ebf1dbff6ede28935ecb3bb6e387b3593348343352546bce92ed5f4783</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMobk7_gtQ7bzLz0STNpdSpk4kw9Dq06enI6MdsuoH_3myd4qUQSDh53_ec8yB0Q8mUEirv1lPb1psaCldnqykjjIU6o1KfoDFNlMZEKXqKxiTRAktK6QhdeL8mhDCi6DkacSkSSbUco5clrJzvu6x3bROF85DO8OtyHu2jwUc7l0X1tuodLto6c81Qx32LD48oOBtfHdyX6KzMKg9Xx3uCPh5n7-kzXrw9zdP7BbZcqR5DocKwHPKSFnlZSiiAJZoLsDnPcwk8UTkXmvM44THngolY5hY0g0KUsUr4BN0OuZuu_dyC703tvIWqyhpot94wJbQWScx4kOpBarvW-w5Ks-nC3N2XocTsUZq1-YPS7FGaAWXwXh_bbPPw_-v8YRcE6SCAsOzOQWe8ddDYkNWB7U3Run-0-QYvoop5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759958423</pqid></control><display><type>article</type><title>Registration on DCE-MRI images via multi-domain image-to-image translation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Cai, Naxin ; Chen, Houjin ; Li, Yanfeng ; Peng, Yahui ; Guo, Linqiang</creator><creatorcontrib>Cai, Naxin ; Chen, Houjin ; Li, Yanfeng ; Peng, Yahui ; Guo, Linqiang</creatorcontrib><description>Registration of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is challenging as rapid intensity changes caused by a contrast agent lead to large registration errors. To address this problem, we propose a novel multi-domain image-to-image translation (MDIT) network based on image disentangling for separating motion from contrast changes before registration. In particular, the DCE images are disentangled into a domain-invariant content space (motion) and a domain-specific attribute space (contrast changes). The disentangled representations are then used to generate images, where the contrast changes have been removed from the motion. After that the resulting deformations can be directly derived from the generated images using an FFD registration. The method is tested on 10 lung DCE-MRI cases. The proposed method reaches an average root mean squared error of 0.3 ± 0.41 and the separation time is about 2.4 s for each case. Results show that the proposed method improves the registration efficiency without losing the registration accuracy compared with several state-of-the-art registration methods. •We formulate the problem of separation of motion and contrast changes as an image-to-image translation problem.•We propose a novel I2I network, namely MDIT, for translating DCE-MRI images cross multiple domains.•Experimental results demonstrate the superiority of our method compared with some state-of-the-art registration methods.</description><identifier>ISSN: 0895-6111</identifier><identifier>EISSN: 1879-0771</identifier><identifier>DOI: 10.1016/j.compmedimag.2022.102169</identifier><identifier>PMID: 36586196</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Contrast Media ; DCE-MRI ; Image disentangling ; Image Interpretation, Computer-Assisted - methods ; Image-to-image translation ; Lung ; Magnetic Resonance Imaging - methods ; Motion ; Registration</subject><ispartof>Computerized medical imaging and graphics, 2023-03, Vol.104, p.102169-102169, Article 102169</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-ed71023ebf1dbff6ede28935ecb3bb6e387b3593348343352546bce92ed5f4783</citedby><cites>FETCH-LOGICAL-c377t-ed71023ebf1dbff6ede28935ecb3bb6e387b3593348343352546bce92ed5f4783</cites><orcidid>0000-0002-6027-4500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compmedimag.2022.102169$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36586196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Naxin</creatorcontrib><creatorcontrib>Chen, Houjin</creatorcontrib><creatorcontrib>Li, Yanfeng</creatorcontrib><creatorcontrib>Peng, Yahui</creatorcontrib><creatorcontrib>Guo, Linqiang</creatorcontrib><title>Registration on DCE-MRI images via multi-domain image-to-image translation</title><title>Computerized medical imaging and graphics</title><addtitle>Comput Med Imaging Graph</addtitle><description>Registration of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is challenging as rapid intensity changes caused by a contrast agent lead to large registration errors. To address this problem, we propose a novel multi-domain image-to-image translation (MDIT) network based on image disentangling for separating motion from contrast changes before registration. In particular, the DCE images are disentangled into a domain-invariant content space (motion) and a domain-specific attribute space (contrast changes). The disentangled representations are then used to generate images, where the contrast changes have been removed from the motion. After that the resulting deformations can be directly derived from the generated images using an FFD registration. The method is tested on 10 lung DCE-MRI cases. The proposed method reaches an average root mean squared error of 0.3 ± 0.41 and the separation time is about 2.4 s for each case. Results show that the proposed method improves the registration efficiency without losing the registration accuracy compared with several state-of-the-art registration methods. •We formulate the problem of separation of motion and contrast changes as an image-to-image translation problem.•We propose a novel I2I network, namely MDIT, for translating DCE-MRI images cross multiple domains.•Experimental results demonstrate the superiority of our method compared with some state-of-the-art registration methods.</description><subject>Algorithms</subject><subject>Contrast Media</subject><subject>DCE-MRI</subject><subject>Image disentangling</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image-to-image translation</subject><subject>Lung</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Motion</subject><subject>Registration</subject><issn>0895-6111</issn><issn>1879-0771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkF1LwzAUhoMobk7_gtQ7bzLz0STNpdSpk4kw9Dq06enI6MdsuoH_3myd4qUQSDh53_ec8yB0Q8mUEirv1lPb1psaCldnqykjjIU6o1KfoDFNlMZEKXqKxiTRAktK6QhdeL8mhDCi6DkacSkSSbUco5clrJzvu6x3bROF85DO8OtyHu2jwUc7l0X1tuodLto6c81Qx32LD48oOBtfHdyX6KzMKg9Xx3uCPh5n7-kzXrw9zdP7BbZcqR5DocKwHPKSFnlZSiiAJZoLsDnPcwk8UTkXmvM44THngolY5hY0g0KUsUr4BN0OuZuu_dyC703tvIWqyhpot94wJbQWScx4kOpBarvW-w5Ks-nC3N2XocTsUZq1-YPS7FGaAWXwXh_bbPPw_-v8YRcE6SCAsOzOQWe8ddDYkNWB7U3Run-0-QYvoop5</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Cai, Naxin</creator><creator>Chen, Houjin</creator><creator>Li, Yanfeng</creator><creator>Peng, Yahui</creator><creator>Guo, Linqiang</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6027-4500</orcidid></search><sort><creationdate>202303</creationdate><title>Registration on DCE-MRI images via multi-domain image-to-image translation</title><author>Cai, Naxin ; Chen, Houjin ; Li, Yanfeng ; Peng, Yahui ; Guo, Linqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-ed71023ebf1dbff6ede28935ecb3bb6e387b3593348343352546bce92ed5f4783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Contrast Media</topic><topic>DCE-MRI</topic><topic>Image disentangling</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image-to-image translation</topic><topic>Lung</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Motion</topic><topic>Registration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Naxin</creatorcontrib><creatorcontrib>Chen, Houjin</creatorcontrib><creatorcontrib>Li, Yanfeng</creatorcontrib><creatorcontrib>Peng, Yahui</creatorcontrib><creatorcontrib>Guo, Linqiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Computerized medical imaging and graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Naxin</au><au>Chen, Houjin</au><au>Li, Yanfeng</au><au>Peng, Yahui</au><au>Guo, Linqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Registration on DCE-MRI images via multi-domain image-to-image translation</atitle><jtitle>Computerized medical imaging and graphics</jtitle><addtitle>Comput Med Imaging Graph</addtitle><date>2023-03</date><risdate>2023</risdate><volume>104</volume><spage>102169</spage><epage>102169</epage><pages>102169-102169</pages><artnum>102169</artnum><issn>0895-6111</issn><eissn>1879-0771</eissn><abstract>Registration of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is challenging as rapid intensity changes caused by a contrast agent lead to large registration errors. To address this problem, we propose a novel multi-domain image-to-image translation (MDIT) network based on image disentangling for separating motion from contrast changes before registration. In particular, the DCE images are disentangled into a domain-invariant content space (motion) and a domain-specific attribute space (contrast changes). The disentangled representations are then used to generate images, where the contrast changes have been removed from the motion. After that the resulting deformations can be directly derived from the generated images using an FFD registration. The method is tested on 10 lung DCE-MRI cases. The proposed method reaches an average root mean squared error of 0.3 ± 0.41 and the separation time is about 2.4 s for each case. Results show that the proposed method improves the registration efficiency without losing the registration accuracy compared with several state-of-the-art registration methods. •We formulate the problem of separation of motion and contrast changes as an image-to-image translation problem.•We propose a novel I2I network, namely MDIT, for translating DCE-MRI images cross multiple domains.•Experimental results demonstrate the superiority of our method compared with some state-of-the-art registration methods.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>36586196</pmid><doi>10.1016/j.compmedimag.2022.102169</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6027-4500</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0895-6111
ispartof Computerized medical imaging and graphics, 2023-03, Vol.104, p.102169-102169, Article 102169
issn 0895-6111
1879-0771
language eng
recordid cdi_proquest_miscellaneous_2759958423
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Algorithms
Contrast Media
DCE-MRI
Image disentangling
Image Interpretation, Computer-Assisted - methods
Image-to-image translation
Lung
Magnetic Resonance Imaging - methods
Motion
Registration
title Registration on DCE-MRI images via multi-domain image-to-image translation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Registration%20on%20DCE-MRI%20images%20via%20multi-domain%20image-to-image%20translation&rft.jtitle=Computerized%20medical%20imaging%20and%20graphics&rft.au=Cai,%20Naxin&rft.date=2023-03&rft.volume=104&rft.spage=102169&rft.epage=102169&rft.pages=102169-102169&rft.artnum=102169&rft.issn=0895-6111&rft.eissn=1879-0771&rft_id=info:doi/10.1016/j.compmedimag.2022.102169&rft_dat=%3Cproquest_cross%3E2759958423%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759958423&rft_id=info:pmid/36586196&rft_els_id=S0895611122001392&rfr_iscdi=true