An Adaptive Approach to Improve the Accuracy of a Rolling Load Prediction Model for a Plate Rolling Process

We present a method that integrates off-line rule identification and an on-line adaptive approach to improve the accuracy of a rolling load prediction model for a plate rolling process. Based on the physical model of a plate rolling process, this work presents an empirical and adaptive approach to i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISIJ International 2000/12/15, Vol.40(12), pp.1216-1222
Hauptverfasser: Nishino, Satoshi, Narazaki, Hiroshi, Kitamura, Akira, Morimoto, Yoshio, Ohe, Kenichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1222
container_issue 12
container_start_page 1216
container_title ISIJ International
container_volume 40
creator Nishino, Satoshi
Narazaki, Hiroshi
Kitamura, Akira
Morimoto, Yoshio
Ohe, Kenichi
description We present a method that integrates off-line rule identification and an on-line adaptive approach to improve the accuracy of a rolling load prediction model for a plate rolling process. Based on the physical model of a plate rolling process, this work presents an empirical and adaptive approach to improve the accuracy ofa rolling load prediction model. Our method consists of an off-line rule identification method and an online adaptive method. Using a hierarchical clustering method, our rule identification method finds a set of opti-malrules that determine appropriate model parameters depending on an operational environment. In contrast to traditional approaches where such rules are determined in an ad-hoc manner, our method provides a "systematic" method to find optimal rules under the specification on model accuracy. Then, using a recursive least-square error method, our on-line adaptive method tunes model parameters by feeding back the observed model errors. Our off-line approach is effective to deal with nonlinear characteristics of the process, and our adaptive approach guarantees to maximize and to maintain the accuracy even if time passes. A successful application of the proposed approach to the plate rolling process is also shown.
doi_str_mv 10.2355/isijinternational.40.1216
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27598586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27598586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c613t-9cbbe08d56ba87b2e69bb6fedcf15df4bce79f4f2137ee94b4331060b82137e63</originalsourceid><addsrcrecordid>eNplkEtrGzEUhYfSQk2a_6BS6G5cafSY0dKEPgIuNSVdiyvNVaxUHrmSXMi_70xtvMlGEkffPYd7muY9o-uOS_kplPAUpop5ghrSBHEt6Jp1TL1qVoyLvpVC0dfNimomWyalftvclhIspZ0YBGd81fzeTGQzwrGGv0g2x2NO4PakJnJ_mN-zVvez7twpg3smyRMgP1OMYXok2wQj2WUcg1vSyfc0YiQ-5ZnZRah4JXc5OSzlXfPGQyx4e7lvml9fPj_cfWu3P77e3222rVOM11Y7a5EOo1QWht52qLS1yuPoPJOjF9Zhr73wHeM9ohZWcM6oonb4ryh-03w8-84b_DlhqeYQisMYYcJ0KqbrpR7ksID6DLqcSsnozTGHA-Rnw6hZGjYvGjaCmqXhefbDJQSKg-gzTC6Uq8GgFFf9TD2cqadS4RGv35BrcBFf-jM96HPG5VzCrrjbQzY48X-K2KES</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27598586</pqid></control><display><type>article</type><title>An Adaptive Approach to Improve the Accuracy of a Rolling Load Prediction Model for a Plate Rolling Process</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Nishino, Satoshi ; Narazaki, Hiroshi ; Kitamura, Akira ; Morimoto, Yoshio ; Ohe, Kenichi</creator><creatorcontrib>Nishino, Satoshi ; Narazaki, Hiroshi ; Kitamura, Akira ; Morimoto, Yoshio ; Ohe, Kenichi</creatorcontrib><description>We present a method that integrates off-line rule identification and an on-line adaptive approach to improve the accuracy of a rolling load prediction model for a plate rolling process. Based on the physical model of a plate rolling process, this work presents an empirical and adaptive approach to improve the accuracy ofa rolling load prediction model. Our method consists of an off-line rule identification method and an online adaptive method. Using a hierarchical clustering method, our rule identification method finds a set of opti-malrules that determine appropriate model parameters depending on an operational environment. In contrast to traditional approaches where such rules are determined in an ad-hoc manner, our method provides a "systematic" method to find optimal rules under the specification on model accuracy. Then, using a recursive least-square error method, our on-line adaptive method tunes model parameters by feeding back the observed model errors. Our off-line approach is effective to deal with nonlinear characteristics of the process, and our adaptive approach guarantees to maximize and to maintain the accuracy even if time passes. A successful application of the proposed approach to the plate rolling process is also shown.</description><identifier>ISSN: 0915-1559</identifier><identifier>EISSN: 1347-5460</identifier><identifier>DOI: 10.2355/isijinternational.40.1216</identifier><language>eng</language><publisher>Tokyo: The Iron and Steel Institute of Japan</publisher><subject>adaptive method ; Applied sciences ; clustering ; Exact sciences and technology ; Forming ; identification ; Metals. Metallurgy ; plate rolling ; Production techniques ; recursive least-square method ; Rolling ; rolling load</subject><ispartof>ISIJ International, 2000/12/15, Vol.40(12), pp.1216-1222</ispartof><rights>The Iron and Steel Institute of Japan</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c613t-9cbbe08d56ba87b2e69bb6fedcf15df4bce79f4f2137ee94b4331060b82137e63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1876,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=866367$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nishino, Satoshi</creatorcontrib><creatorcontrib>Narazaki, Hiroshi</creatorcontrib><creatorcontrib>Kitamura, Akira</creatorcontrib><creatorcontrib>Morimoto, Yoshio</creatorcontrib><creatorcontrib>Ohe, Kenichi</creatorcontrib><title>An Adaptive Approach to Improve the Accuracy of a Rolling Load Prediction Model for a Plate Rolling Process</title><title>ISIJ International</title><addtitle>ISIJ Int.</addtitle><description>We present a method that integrates off-line rule identification and an on-line adaptive approach to improve the accuracy of a rolling load prediction model for a plate rolling process. Based on the physical model of a plate rolling process, this work presents an empirical and adaptive approach to improve the accuracy ofa rolling load prediction model. Our method consists of an off-line rule identification method and an online adaptive method. Using a hierarchical clustering method, our rule identification method finds a set of opti-malrules that determine appropriate model parameters depending on an operational environment. In contrast to traditional approaches where such rules are determined in an ad-hoc manner, our method provides a "systematic" method to find optimal rules under the specification on model accuracy. Then, using a recursive least-square error method, our on-line adaptive method tunes model parameters by feeding back the observed model errors. Our off-line approach is effective to deal with nonlinear characteristics of the process, and our adaptive approach guarantees to maximize and to maintain the accuracy even if time passes. A successful application of the proposed approach to the plate rolling process is also shown.</description><subject>adaptive method</subject><subject>Applied sciences</subject><subject>clustering</subject><subject>Exact sciences and technology</subject><subject>Forming</subject><subject>identification</subject><subject>Metals. Metallurgy</subject><subject>plate rolling</subject><subject>Production techniques</subject><subject>recursive least-square method</subject><subject>Rolling</subject><subject>rolling load</subject><issn>0915-1559</issn><issn>1347-5460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNplkEtrGzEUhYfSQk2a_6BS6G5cafSY0dKEPgIuNSVdiyvNVaxUHrmSXMi_70xtvMlGEkffPYd7muY9o-uOS_kplPAUpop5ghrSBHEt6Jp1TL1qVoyLvpVC0dfNimomWyalftvclhIspZ0YBGd81fzeTGQzwrGGv0g2x2NO4PakJnJ_mN-zVvez7twpg3smyRMgP1OMYXok2wQj2WUcg1vSyfc0YiQ-5ZnZRah4JXc5OSzlXfPGQyx4e7lvml9fPj_cfWu3P77e3222rVOM11Y7a5EOo1QWht52qLS1yuPoPJOjF9Zhr73wHeM9ohZWcM6oonb4ryh-03w8-84b_DlhqeYQisMYYcJ0KqbrpR7ksID6DLqcSsnozTGHA-Rnw6hZGjYvGjaCmqXhefbDJQSKg-gzTC6Uq8GgFFf9TD2cqadS4RGv35BrcBFf-jM96HPG5VzCrrjbQzY48X-K2KES</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Nishino, Satoshi</creator><creator>Narazaki, Hiroshi</creator><creator>Kitamura, Akira</creator><creator>Morimoto, Yoshio</creator><creator>Ohe, Kenichi</creator><general>The Iron and Steel Institute of Japan</general><general>Iron and Steel Institute of Japan</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20000101</creationdate><title>An Adaptive Approach to Improve the Accuracy of a Rolling Load Prediction Model for a Plate Rolling Process</title><author>Nishino, Satoshi ; Narazaki, Hiroshi ; Kitamura, Akira ; Morimoto, Yoshio ; Ohe, Kenichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c613t-9cbbe08d56ba87b2e69bb6fedcf15df4bce79f4f2137ee94b4331060b82137e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>adaptive method</topic><topic>Applied sciences</topic><topic>clustering</topic><topic>Exact sciences and technology</topic><topic>Forming</topic><topic>identification</topic><topic>Metals. Metallurgy</topic><topic>plate rolling</topic><topic>Production techniques</topic><topic>recursive least-square method</topic><topic>Rolling</topic><topic>rolling load</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishino, Satoshi</creatorcontrib><creatorcontrib>Narazaki, Hiroshi</creatorcontrib><creatorcontrib>Kitamura, Akira</creatorcontrib><creatorcontrib>Morimoto, Yoshio</creatorcontrib><creatorcontrib>Ohe, Kenichi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>ISIJ International</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishino, Satoshi</au><au>Narazaki, Hiroshi</au><au>Kitamura, Akira</au><au>Morimoto, Yoshio</au><au>Ohe, Kenichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Approach to Improve the Accuracy of a Rolling Load Prediction Model for a Plate Rolling Process</atitle><jtitle>ISIJ International</jtitle><addtitle>ISIJ Int.</addtitle><date>2000-01-01</date><risdate>2000</risdate><volume>40</volume><issue>12</issue><spage>1216</spage><epage>1222</epage><pages>1216-1222</pages><issn>0915-1559</issn><eissn>1347-5460</eissn><abstract>We present a method that integrates off-line rule identification and an on-line adaptive approach to improve the accuracy of a rolling load prediction model for a plate rolling process. Based on the physical model of a plate rolling process, this work presents an empirical and adaptive approach to improve the accuracy ofa rolling load prediction model. Our method consists of an off-line rule identification method and an online adaptive method. Using a hierarchical clustering method, our rule identification method finds a set of opti-malrules that determine appropriate model parameters depending on an operational environment. In contrast to traditional approaches where such rules are determined in an ad-hoc manner, our method provides a "systematic" method to find optimal rules under the specification on model accuracy. Then, using a recursive least-square error method, our on-line adaptive method tunes model parameters by feeding back the observed model errors. Our off-line approach is effective to deal with nonlinear characteristics of the process, and our adaptive approach guarantees to maximize and to maintain the accuracy even if time passes. A successful application of the proposed approach to the plate rolling process is also shown.</abstract><cop>Tokyo</cop><pub>The Iron and Steel Institute of Japan</pub><doi>10.2355/isijinternational.40.1216</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0915-1559
ispartof ISIJ International, 2000/12/15, Vol.40(12), pp.1216-1222
issn 0915-1559
1347-5460
language eng
recordid cdi_proquest_miscellaneous_27598586
source J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects adaptive method
Applied sciences
clustering
Exact sciences and technology
Forming
identification
Metals. Metallurgy
plate rolling
Production techniques
recursive least-square method
Rolling
rolling load
title An Adaptive Approach to Improve the Accuracy of a Rolling Load Prediction Model for a Plate Rolling Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Approach%20to%20Improve%20the%20Accuracy%20of%20a%20Rolling%20Load%20Prediction%20Model%20for%20a%20Plate%20Rolling%20Process&rft.jtitle=ISIJ%20International&rft.au=Nishino,%20Satoshi&rft.date=2000-01-01&rft.volume=40&rft.issue=12&rft.spage=1216&rft.epage=1222&rft.pages=1216-1222&rft.issn=0915-1559&rft.eissn=1347-5460&rft_id=info:doi/10.2355/isijinternational.40.1216&rft_dat=%3Cproquest_cross%3E27598586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27598586&rft_id=info:pmid/&rfr_iscdi=true